Итак, длина волны – это минимальное расстояние между частицами среды, колеблющимися синхронно. Длина волны связана с частотой колебаний: чем больше частота, тем меньше в данной среде длина волны. Запомним это!
Длина волны λ равна расстоянию, на которое распространяется волна за время, равное периоду колебаний Т. Если v – скорость распространения волны, то λ = v·T. Частота колебаний f – это величина, обратная периоду:
f = 1/T , поэтому λ = v/f.
Чем больше скорость волны и чем больше период колебаний (то есть меньше частота), тем больше длина волны. Эта формула справедлива для любых волн, как звуковых, так и электромагнитных. Мы ещё не раз её вспомним.
Инфразвуковые низкочастотные волны самые длинные: в воздухе более 20 м и могут достигать сотен метров. Длины волн для ультразвука, наоборот, очень малы: в воздухе менее 15 мм. При ультразвуковой диагностике в медицине применяют волны длиной в доли миллиметра – именно такие короткие волны позволяют заметить в тканях организма неоднородности малого размера (ведь волны любой природы не замечают преград, размер которых гораздо меньше длины волны – так, океанская волна «не заметит» маленький камушек на своём пути). Столь же короткие ультразвуковые волны используют летучие мыши для локации. Ну а для звукового диапазона длины волн в воздухе простираются от 15 мм до 20 метров.
Обратите внимание: длина волны изменяется при переходе волны из одной среды в другую. Так, в воде или другой среде все длины волн уменьшаются во столько же раз, во сколько раз увеличивается скорость звука (в воде – в 4,4 раза).
Частота же колебаний частиц в волне – это её неизменяющаяся характеристика. Поэтому физики предпочитают характеризовать волну именно частотой колебаний частиц.
Рис. 2. Смещение частицы среды как функция времени в гармонической волне
Ещё одна важная характеристика волны – её интенсивность. Она определяется амплитудой («размахом») колебаний частиц в волне и связана с громкостью воспринимаемого звука (позже поговорим об этом подробнее).
Наконец, очень важна форма колебаний. Мы имеем в виду форму графика, изображающего зависимость смещения частиц среды в фиксированном месте от времени. Такая же форма повторится на «мгновенной фотографии» распределения смещений частиц среды вдоль направления распространения волны (рис. 1). Наиболее простая форма колебаний – синусоидальная (рис. 2). Волны с такой формой колебаний называют гармоническими. Они имеют очень большое значение в акустике и вообще в физике. Вскоре мы узнаем почему.
Секреты музыкальных звуков
Внимание! Сейчас мы откроем тайну музыкальных и немузыкальных звуков. Итак: любые периодические колебания источника рождают музыкальный звук, а непериодические – немузыкальный.
Музыкальный звук мы можем пропеть, немузыкальный – не можем. У музыкальных звуков мы различаем высоту тона (то есть отождествляем звук с определённой нотой музыкального строя), у немузыкальных – нет. К примеру, пение птиц красиво, но записать его нотами и воспроизвести голосом или на музыкальном инструменте не получается (разве что «ку-ку» можно спеть вполне узнаваемо).
Ещё у музыкальных звуков есть тембр – «звуковой окрас», позволяющий отличить ноту «до», взятую на рояле, от такой же ноты, взятой на другом инструменте.
Где же в форме колебаний спрятаны все эти особенности музыкального звука? И как можно классифицировать многообразие всевозможных форм колебаний, чтобы можно было «подделывать» (синтезировать) нужные звуки или сделать программы их распознавания?
Рис. 3. Пример разложения периодического колебания (кривая 3) на гармоники (кривые 1 и 2)
Оказывается, любое периодическое движение чисто математически может быть представлено как сумма гармонических колебаний с кратными частотами, то есть с частотами, полученными умножением некоторой основной частоты f0 на целые числа: 2, 3, 4… (это известная математикам теорема Фурье). Наименьшая частота этого ряда (f0) называется основной, а колебание с этой частотой – основным колебанием или первой гармоникой. Основная частота определяется периодом исходного движения. Колебания с кратными частотами 2f0, 3f0, 4f0… называют гармоническими обертонами или просто гармониками (второй, третьей, четвёртой и так далее до бесконечности). Многообразие сочетаний различных амплитуд (и фаз) гармоник обеспечивает все возможные формы результирующего колебания.