Самое интересное: если вы просто ущипнёте струну, то многие обертоны возбудятся одновременно, и соответствующие им движения наложатся друг на друга, в результате форма струны в процессе колебаний будет уже не синусоидальной, а более сложной. Это как «спектральный анализ наоборот»: сложение простых гармоник даёт в результате сложное колебание.
Ущипнув струну, мы услышим музыкальный звук, высота тона которого соответствует основной частоте f0, а наличие обертонов придаст звуку тембральный окрас. Щипая струну в разных местах, мы меняем амплитуды обертонов и, значит, меняем тембр. Например, щипок ровно посередине струны исключает из движений чётные гармоники 2f0, 4f0 и т. д., так как для этих гармоник средняя точка струны должна быть неподвижна.
Рис. 5. Простейшие колебания струны (первая, вторая и третья гармоники)
Какими параметрами струны определяется её основная частота? Как видно из рисунка 5, чем длиннее струна, тем больше длина волны первой гармоники, а значит, частота колебаний меньше (низким звукам рояля соответствуют самые длинные струны, высоким – самые короткие). Основная частота f0 зависит также от натяжения струны: увеличивая натяжение, мы увеличиваем основную частоту (именно путём изменения натяжения струн настройщик добивается нужной частоты звука).
Как и для бегущих волн, длина стоячей волны λ связана с частотой колебаний частиц и скоростью v распространения волны универсальной формулой λ = v/f. Длина волны первой (основной) гармоники, как видно из рисунка 5, в два раза больше длины l струны: λ = 2l. Так что основная частота струны f0 = v/λ = v/2l. Увеличение натяжения струны приводит к увеличению скорости волн v, а значит, и к увеличению основной частоты.
Ещё одним простым телом, рождающим музыкальные звуки, являются цилиндрические трубы, ширина которых гораздо меньше длины (вспомним, например, трубы оргáна). Главным звучащим телом в трубах является наполняющий их воздух. Возбуждая на одном конце трубы движение воздуха с помощью вибратора, мы приводим в колебательное движение весь столб воздуха в трубе, и он рождает звуковую волну, бегущую от трубы к вашему уху. Основная частота f0 определяется длиной воздушного столба: чем длиннее труба, тем ниже её звук, как и для струны. И также наряду с основной частотой возбуждаются обертоны с кратными частотами.
Струны и воздушные трубы – основа всех музыкальных инструментов. Именно они рождают музыкальные звуки. Предметы же более сложных форм являются источниками немузыкальных звуков.
Можно ли увидеть звук?
Любой твёрдый предмет будет издавать те или иные звуки, если по нему ударять или, к примеру, водить по нему смычком. И у любого предмета конечных размеров, как и у струн, есть характерный набор собственных колебаний – возможных простейших движений его частиц. У большинства объемных тел частоты собственных колебаний образуют непрерывный спектр в пределах определённой полосы частот, зачастую весьма широкой, то есть воспринимаются ухом как шум. Например, ударив по столу, вы слышите звук, создаваемый возникающими колебаниями стола, но высоту тона определить не можете. Можно только предсказать, что шум от удара по массивному шкафу будет более низкочастотным, чем от удара по небольшому столику.
Немецкий физик и музыкант Эрнест Хладни сумел сделать видимыми собственные колебания плоских пластин разной формы (круглых, квадратных и прочих). Для этого он возбуждал в них колебания с помощью скрипичного смычка (рис. 6). При этом пластины издавали немузыкальные звуки разной степени «противности». На поверхность пластин он насыпал мелкий песок, который слетал с активно колеблющихся областей и концентрировался в тех местах, которые оставались практически неподвижными. Проводя смычком по краю пластины в разных местах, под разными углами и с различной скоростью, можно возбуждать различные собственные колебания и получать самые разные картины: иногда простые, иногда сложные, иногда красивые, иногда беспорядочные. Каждому типу колебаний соответствуют определённая «песочная картина» и своё неповторимое звучание.