Выбрать главу

Во-вторых, сам темп времени теперь зависит от движения и становится поэтому относительным. Часы, движущиеся относительно нас, всегда представляются нам отстающими. Это означает, что измеряемое ими время замедлено в своем беге. Конечно, и в этом случае эффект на самом деле заметен только при больших скоростях.

Наконец, в-третьих, время оказывается подверженным действию сил тяготения, они влияют на его темп: там, где имеются силы тяготения, время течет медленнее, чем в отсутствие этих сил. Различие в темпе времени практически незаметно при земном тяготении, но оно тем значительнее, чем сильнее тяготение. В присутствии очень сильного тяготения, например вблизи черной дыры, темп времени столь сильно замедляется, что оно даже как бы останавливается там в своем беге.

Теория относительности дает полное представление о том, как и от чего зависит темп времени и отмеряющий его ход часов. Она позволяет построить физико-математические модели, описывающие время и пространство Вселенной как целого. На ее основе Фридман предсказал общую динамику Вселенной, а учет в его теории данных астрономии позволил установить, что космологическое расширение продолжается приблизительно 15 или 18 миллиардов лет.

Так в физике появилась мера времени, определяющая темп эволюции всей Вселенной. Возраст нашей Галактики на несколько (3 или 5) миллиардов лет меньше возраста Вселенной. Солнце и Земля еще моложе — им около 5 миллиардов лет. Вселенная как целое старше галактик, звезд, планет, а также и самих атомных ядер и элементарных частиц, из которых состоят все ее тела и системы.

Кстати, о возрасте атомных ядер имеются непосредственные экспериментальные данные. Они получены из измерений природной распространенности на Земле некоторых радиоактивных элементов. Возраст самых старых их ядер достигает 15 или даже 18 миллиардов лет. Замечательно, что эти данные согласуются с космологическими оценками возраста мира. Конечно, точность, с которой в обоих случаях определяется возраст, не слишком высока, и потому совпадение этих величин нельзя понимать слишком буквально. Нельзя, например, считать, что ядра возникли в самой сингулярности,— они могли возникнуть через минуты, часы, годы, а то и сотни миллионов лет после нее.

Кванты

Квантовая теория, вторая великая физическая теория наших дней, вместе с теорией относительности, в комбинации с нею, проливает новый свет на свойства времени, особенно в микромире.

Классическая механика дала теорию времени для макромира, теория относительности — для мегамира, для Вселенной как целого. В микромире без квантовой теории не обойтись — это область, где квантовые явления играют ключевую роль. Подлинный синтез обеих теорий, в котором наравне с квантовой теорией в полную силу звучала бы как специальная, так и общая теория относительности, остается пока еще делом будущего.

Ряд замечательных следствий такого синтеза известен, однако, уже и сейчас. Прежде всего, это гравитон — квант «взволнованного» пространства-времени, который сочетает в себе свойства элементарной частицы, летящей со скоростью света, и легкой волны искривленности, бегущей по четырехмерному миру. Искривленность пространства-времени, даже очень слабая, обеспечивает его энергию и импульс. Собственно, это энергия и импульс самого искривленного пространства-времени, трактуемые на языке квантовой теории. Здесь приоткрывается завеса над совсем новыми связями в природе, глубинный смысл которых еще предстоит выяснить. И в самом деле, квантовые эффекты вызывают «материализацию» пространства-времени (если воспользоваться этим старым словом, которое в ходу сейчас, кажется, по большей части у фокусников-иллюзионистов).

Другим замечательным успехом на этом пути мы обязаны английскому теоретику С. Хокингу. Он применил квантовые соображения к такому объекту, как черная дыра. Здесь поле тяготения, а с ним и искривленность пространства-времени уже не слабы, как в «проквантованных» гравитационных волнах. Напротив, это пример очень сильных релятивистских эффектов. Оказалось, что черные дыры предстанут перед нами уже не абсолютно черными, если учесть соотношения неопределенностей и иные закономерности мира квантовых явлений. Хокинг доказал, что черная дыра должна испускать частицы и излучение. Она испускает их подобно нагретому телу, причем соответствующая температура тем выше, чем меньше масса, ушедшая в черную дыру. Излучение уносит с собой энергию, которая черпается из этой массы. Масса убывает, но из-за этого температура только возрастает. А чем выше температура, тем больше мощность излучения. В конце концов черная дыра заканчивает свое существование сильным всплеском излучения.

Этот эффект получил название квантового испарения черных дыр. Он не наблюдался в природе (как и гравитон), но важна сама принципиальная возможность очень сильного влияния квантовых закономерностей на поведение пространства-времени. Квантовое испарение уничтожает чёрную дыру и вместе с этим ликвидирует причину замедления времени с данной области пространства. Если черная дыра — это «тупик» в потоке времени, то квантовые эффекты способны эту преграду размыть и освободить временной поток.

Роль квантовых эффектов всегда велика, когда масштабы времени (и пространства) оказываются малыми, характерными для микромира. Так было в первые мгновения космологического расширения, когда возраст Вселенной составлял невообразимо малые доли секунды (порядка 10-43 с). При этих условиях квантовые эффекты должны были «работать» во всю силу. И, значит, начало Вселенной было существенно квантовым. Течение времени в самом своем истоке было, вероятно, не непрерывным, а квантовым, прерывистым. Значит, существовали такие мельчайшие его отрезки, что в пределах каждого из них нельзя различать отдельные последовательные части. Каждый отрезок времени возникает сразу как целое, подобно кванту света, излучаемому атомом. Внутри такого «кванта времени» не имеют смысла понятия раньше и позже. Из начальной космологической сингулярности время истекало не сплошным потоком, а как бы отдельными толчками. Космическое время — это время нашей Вселенной, оно возникло и существует вместе с ней.

Наконец, квантовые эффекты в течении времени изменяют представления о световом конусе, о причинности. В теории относительности каждое событие в физическом мире характеризуется моментом времени, в который оно произошло, и тремя пространственными координатами «места происшествия». Эти четыре числа определяют событие как точку в четырехмерном пространстве-времени. Но квантовые эффекты не позволяют уместить событие в точку. Любое событие неизбежно имеет какую-то протяженность во времени и пространстве — оно не может быть точечным. Точка-событие размывается в пятно (вернее, в четырехмерный объем), размеры которого диктуются квантовой неопределенностью.

Если событие не может быть точечным, то это должно вызывать размытие и мировой линии частицы. В «неквантованной» теории относительности эта линия складывается из следующих друг за другом точек-событий в истории частицы. При квантовом же взгляде мировая линия предстает, так сказать, толстой. В частности, толстой должна быть и мировая линия света, очерчивающего световой конус в пространстве-времени. Это в действительности означает, что граница светового конуса оказывается нечеткой, размытой. Но тогда возникает неопределенность в таких важных, даже принципиальных вещах, как возможность причинной связи между событиями. Мы помним, что два события могут быть причинно связаны и одно может быть следствием другого, когда оба они не выходят за пределы светового конуса. Если же сами эти «пределы» размыты, то в соответствующих малых пространственно-временных масштабах становится неопределенным и само утверждение о возможности причинной связи. То есть мы не в состоянии с полной определенностью узнать, могут ли эти события быть связаны каким-либо сигналом.