Выбрать главу

Те же выводы были сделаны Ранкином, в 1850 году опубликовавшим работу «0 механическом действии тепла», в которой он придерживался идеи об атомной структуре материи. Для него материя была всего лишь скоплением молекул, которые он представлял как крошечные вихри, способные совершать вращательные или колебательные движения. С помощью значительного математического аппарата Ранкии разработал уравнения, связывавшие термодинамические переменные (объем, давление, температуру), для воздуха и водяного пара, приняв с некоторыми оговорками эксперименты Джоуля и не отменяя принципа Карно. По мнению Ранкина, тепло было связано с большим или меньшим движением составляющих вихрей. И, что самое главное, поскольку тепло и механическая работа, будучи двумя разными формами движения, стояли для него на одном и том же уровне, переход одного в другое не создавал никакой проблемы, как это было у Томсона.

Сегодня неуступчивость Томсона относительно теории Карно кажется удивительной. В других проблемах, таких как электромагнетизм, он был гораздо более открыт к согласованию различных точек зрения. И это удивительно, если учесть, что решение Клаузиуса не исключало общих выводов Карно. Как сказал сам Клаузиус, «абсолютно необязательно полностью отвергать теорию Карно». Да и сам Карно не держался так сильно за собственные идеи. В его записках, обнаруженных через некоторое время после его смерти, читаем:

«Всегда, когда разрушается движущая сила, существует одновременное производство некоторого количества тепла, точно пропорциональное разрушенной движущей силе. И наоборот, всегда, когда происходит разрушение тепла, образуется движущая сила».

Это то же самое, что говорил Джоуль десять лет спустя.

ЗАКОНЫ ТЕРМОДИНАМИКИ

В начале 1851 года Томсон был избран фото Лондонского королевского общества. В то время он только что открыл явление, известное сегодня как эффект Томсона. Ученый изучал образование тепла в проводнике, по которому шел ток, при этом концы проводника были нагреты до разной температуры, и заметил, что, помимо образования тепла в соответствии с эффектом Джоуля, некоторое его количество могло производиться или поглощаться в зависимости от направления тока. Анализ этого эффекта позволил Томсону объяснить два других известных термоэлектрических эффекта — Зеебека и Пельтье.

В 1852 году Томсон вместе с Джоулем начал работать над рядом экспериментов по тепловым эффектам. Результатом этих исследований было открытие эффекта Джоуля — Томсона, в котором описано изменение температуры газа при прохождении через сужение или пористую пробку, без обмена теплом с окружающей средой. Почти все газы, за исключением таких, как водород, гелий и неон, при этом процессе охлаждаются, что и используется в холодильных системах.

ТЕРМОЭЛЕКТРИЧЕСКИЕ ЭФФЕКТЫ

Под названием термоэлектрических эффектов известно три физических явления: эффект Зеебека, открытый в 1821 году немецким физиком Томасом Иоганном Зеебеком, эффект Пельтье, открытый в 1834 году французским физиком Жаном Шарлем Атаназом Пельтье, и эффект Томсона, открытый в 1851 году Уильямом Томсоном.

Эффект Зеебека

Он состоит в появлении электрического тока (который можно зафиксировать с помощью амперметра) в цепи, образованной двумя биметаллическими соединениями, когда между этими соединениями устанавливается разница температур (см. рисунок 1). Зеебек открыл это явление, когда заметил, что компас вблизи этой цепи смещается. Самое прямое применение эффекта — термопара, то есть прибор, позволяющий определить на основе произведенного тока разницу температур между горячей и теплой узловыми точками.

Также этот эффект используют термоэлектрические генераторы, превращая остаточное тепло (например, на заводе по производству электричества) в дополнительное электричество.

РИС 1

Эффект Зеебека

Эффект Пельтье

Он проявляется при пропускании тока через соединение двух различных металлов, при этом производится или поглощается тепло. В соответствии с законом Джоуля при протекании тока через вещество производится некоторое количество тепла (QДжоуль), пропорциональное квадрату силы тока. Пельтье также заметил, что в соединении этих двух материалов тепло производится (+QПельтье) или поглощается (-QПельтье) в зависимости от направления движения тока, которое можно инвертировать, изменив полюса батареи (см. рисунок 2). На этом эффекте основан принцип действия тепловых насосов и термоэлектрических холодильников.