Открытие Эйнштейном кривизны пространства физики приветствовали взрывом аплодисментов, какие до тех пор можно было слышать только на бейсболе. Блестящий ученый, сэр Артур Эддингтон, который с пространством и временем обращается как поэт (даже его рассуждения о гравитации пронизаны юмором: он говорит, что идеальную возможность изучать тяготение имеет человек, падающий в лифте с двадцатого этажа), так вот, сэр Артур Эддингтон аплодировал громче всех. По его словам, без этой кривизны в пространстве разобраться вообще невозможно. Мы ползаем по своему пространству, как муха ползает по глобусу, думая, что он плоский. Тайны тяготения озадачивают нас (я не имею в виду тех немногих счастливцев, которым представился редкий случай упасть в лифте с двадцатого этажа. Но и на них откровение снизошло слишком поздно, а откровение заключается в следующем: мы и не падаем вовсе, а просто искривляемся). «Признайте кривизну пространства, – писал Эддингтон в 1927 году, – и таинственная сила исчезнет. Эйнштейн изгнал этого демона».
Но сейчас, четырнадцать лет спустя, начинает казаться, что Эйнштейна мало беспокоит, изогнуто пространство или нет. Ему это, по-видимому, все равно. Один известный физик, руководящий факультетом в одном из крупнейших университетов, недавно написал мне по этому поводу: «Эйнштейн надеется, что общая теория, учитывающая некоторые свойства пространства, напоминающие то, что сейчас обычно называют кривизной, может в будущем оказаться более плодотворной, чем это, по-видимому, имеет место в настоящее время». Сказано чисто по-профессорски. Большинство же говорит просто, что Эйнштейн махнул рукой на кривое пространство. Все равно что сэр Исаак Ньютон, зевнув, сказал бы: «Ах, вы об этом яблоке – а может быть, оно вовсе и не падало?»
Из книги «The World of Mathematics», New York, 1966.
С. Ликок – известный канадский писатель-юморист, видный ученый-экономист, сотрудник Мак-Гиллского университета.
О существе математических доказательств
Дж. Коэн
Бертран Рассел определил математику как науку, в которой мы никогда не знаем, о чем говорим и насколько правильно то, что мы говорим. Известно, что математика широко применяется во многих других областях науки. Следовательно, и остальные ученые в большинстве своем не знают, о чем говорят и истина ли то, что они говорят.
Таким образом, одна из главных функций математического доказательства – создание надежной основы для проникновения в суть вещей.
Аристотель относится к числу первых философов, занявшихся изучением математических доказательств. Он изобрел силлогизм – приспособление, которое в силу своей абсолютной бесполезности привлекало внимание бесчисленного множества логиков и философов. Силлогизм состоит из первой посылки, второй посылки и заключения. Логики только и делают, что приходят к заключениям. Просто чудо, что они до сих пор не обошли все кругом и не пришли туда, откуда вышли.
В первой посылке заключается истина, относящаяся к целому классу вещей, например: «Не все посылки верны». Во второй посылке утверждается, что интересующая нас вещь принадлежит к этому классу, например: «Последние четыре слова предыдущего предложения являются посылкой». Таким образом, мы приходим к заключению: «Не всегда верно, что не все посылки верны». Такова всеобъемлющая полнота, с которой логика обобщает явления повседневной жизни.
Опираясь на математические доказательства, ученые сумели соединить дотоле разрозненные области, термодинамику и технику связи, в новую дисциплину – теорию информации. «Информация», научным образом определенная, пропорциональна удивлению: чем удивительнее сообщение, тем больше информации оно содержит. Если, подняв телефонную трубку, человек услышит «алло», это его не очень удивит; значительно больше будет информация, если его вместо «алло» внезапно ударит током.