Колоссальные новые возможности открылись перед математическими доказательствами с развитием теории множеств в конце прошлого столетия и начале нынешнего. Автор сам недавно открыл одну теорему в теории множеств, которая заслуживает того, чтобы ее здесь привести.
Множество, единственным элементом которого является множество, может быть изоморфно множеству, единственным элементом которого является множество, все элементы которого образуют подгруппу элементов в множестве, которое является единственным элементом множества, с которым оно изоморфно.
Эту интуитивно очевидную теорему можно окольным путем вывести из теоремы об изоморфизме в теории групп.
Рассмотрим теперь логические системы. От простого набора теорем логическая система отличается так же, как готовое здание от груды кирпичей: в логической системе каждая последующая теорема опирается на предыдущую. Пойа отмечал, что заслуга Евклида состояла не в коллекционировании геометрических фактов, а в их логическом упорядочении. Если бы он просто свалил их в кучу, то прославился бы не больше, чем автор любого учебника по математике для средней школы.
Чтобы проиллюстрировать способы математических доказательств, мы приведем пример развернутой логической системы.
Все лошади имеют одинаковую масть (докажем по индукции).
Очевидно, что одна лошадь имеет одинаковую масть. Обозначим через P(k) предположение, что k лошадей имеют одинаковую масть, и покажем, что из такого предположения вытекает, что k + 1 лошадей имеют ту же масть. Возьмем множество, состоящее из k + 1 лошадей, и удалим из него одну лошадь, тогда оставшиеся kлошадей по предположению имеют одинаковую масть. Вернем удаленную лошадь в множество, а вместо нее удалим Другую. Получится снова табун из k лошадей. Согласно предположению, все они одной масти. Так мы переберем все k + 1 множеств, в каждом по kлошадей. Отсюда следует, что все лошади одной масти, т.е. предположение, что P(k) влечет за собой P(k + 1). Но ранее мы уже показали, что предположение Р(1) выполняется всегда, значит, Рсправедливо для любого kи все лошади имеют одинаковую масть.
Все предметы имеют одинаковую окраску.
В доказательстве леммы 1 никак не используется конкретная природа рассматриваемых объектов. Поэтому в утверждений «если Х– лошадь, то все Химеют одинаковую окраску» можно заменить «лошадь» на «нечто» и тем самым доказать следствие. (Можно, кстати, заменить «нечто» на «ничто» без нарушения справедливости утверждения, но этого мы доказывать не будем.)
Все предметы белого цвета.
Если утверждение справедливо для всех X, то при подстановке любого конкретного Хоно сохраняет свою справедливость. В частности, если Х– слон, то все слоны одинакового цвета. Аксиоматически достоверным является существование белых слонов (см. Марк Твен, Похищение белого слона). Следовательно, все слоны белого цвета. Тогда из следствия I вытекает следствие II, что и требовалось доказать!
Александр Великий не существовал.
Заметим для начала, что историки, очевидно, всегда говорят правду (поскольку они всегда ручаются за свои слова и поэтому, следовательно, не могут лгать). Отсюда исторически достоверным является утверждение: «Если Александр Великий существовал, то он ездил на вороном коне, которого звали Буцефал». Но, согласно следствию II, все предметы белые, и Александр не мог ездить на вороном коне. Поэтому для справедливости высказанного выше условного исторического утверждения необходимо, чтобы условие нарушалось. Следовательно, Александр Великий в действительности не существовал.