тичным образом, огромное число и разнообразие объектов биологической эволюции, чрезвычайная сложность их взаимодействий — не препятствие, а условие описания узловых макроэтапов (ароморфозов) процесса биологической эволюции. На каждом этапе некий существенный в естественном отборе признак, свойство достигает предельного совершенства. Физико-химический и биологический смысл и содержание этого совершенства можно проанализировать без учета времени, необходимого для его достижения (принцип предельного совершенства при анализе эволюционного процесса).
Ясно, однако, что применение принципа предельного совершенства при анализе эволюционного процесса — лишь удобный, а в некоторых случаях и единственно возможный способ первого приближения к действительной картине.
Достаточно полное представление о биологической эволюции может дать рассмотрение не только основных этапов, предельно совершенных по каким-либо факторам, но и темпов эволюции. Далее делается попытка рассмотрения закономерностей, определяющих темпы эволюции, скорость возрастания «биологического прогресса».
Традиционные определения понятий «жизнь, живое существо» были основаны на перечислениях характерных свойств живых организмов. Однако в большинстве случаев удавалось каждое характерное свойство найти в заведомо неживых объектах. Анализ этой ситуации привел к распространенному ныне скептическому отношению к самой возможности таких определений, к убеждению в «бессмысленности» и бесплодности таких попыток {446, 429]. Эту ситуацию четко анализировал Э. Бауэр [13], предложивший, как отмечено выше, в качестве определяющего живое состояние «принцип устойчивого неравновесия».
Затруднения в формулировании необходимых строгих определений снимаются при учете эволюционного происхождения живых организмов: их перечисляемые обычно характерные свойства возникают, формируются в ходе эволюции. В соответствии с этим жизнь — это процесс существования объектов биологической эволюции. Живые существа (организмы) — объекты биологической эволюции [339, 340]. Свойства и характерные черты жизни и жизни существ (организмов) различны на разных стадиях биологической эволюции. Следовательно, единственное, что остается определить, это понятие «биологическая эволюция». Это сделано в следующей главе.
Итогом проведенного далее анализа, по нашему мнению, является доказательство возможности дедуктивного описания важнейших биологических закономерностей и свойств живых организмов посредством рассмотрения процесса эволюции в данных химических и физических условиях. Это значит, что основные этапы биологической эволюции детерминированы физическими и ^химическими факторами окружающей среды.
Глава 2
КИНЕТИЧЕСКИЕ КРИТЕРИИ ЕСТЕСТВЕННОГО ОТБОРА И ФИЗИКО-ХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ ФАКТОРЫ БИОЛОГИЧЕСКОЙ ЭВОЛЮЦИИ
Осуществление естественного отбора по признаку кинетического совершенства в системе, способной к полиморфной кристаллизации (матричным синтезам). Принципиальная возможность анализа наиболее вероятных путей биологической эволюции на основе оценки величин кинетического, биологического совершенства и эволюционного потенциала.
Для того чтобы пояснить смысл понятия кинетического совершенства, продолжим аналогию между размножением и борьбой за существование живых организмов и кристаллов.
Представим себе, что некая «жидкость» может с одинаковой вероятностью кристаллизоваться в различных кристаллических модификациях, т. е. имеется система, способная к полиморфной кристаллизации.
В нашем абстрактном случае любая возможная кристаллическая форма имеет одну и ту же вероятность появиться в данных условиях. Отсюда следует, что в этих условиях термодинамическая «выгодность» любой формы одинакова.
В достаточно большом, хотя и ограниченном пространстве, судьба системы, вид, форма кристаллов, заполняющих это пространство, определяется, следовательно, не термодинамическими, а кинетическими особенностями разных кристаллических форм: пространство сначала заполнится формой, которая образуется по случайно возникшей затравке быстрее, чем остальные. Затем по прошествии достаточно долгого времени исследуемое пространство окажется занятым всеми кристаллическими формами в равной доле (поскольку термодинамические характеристики всех форм одинаковы). Представим себе теперь, что более «быстрая», т. е. быстрее заполняющая пространство форма, менее стабильна. И в этом случае такая форма некоторое время может «господствовать» в системе, заполняя большую часть ее объема. Теперь допустим (что вполне реально), что у более быстрой, или в общем случае, у какой-то одной из кристаллических форм расположение молекулярных групп на гранях, сторонах кристалла обусловливает их каталитические свойства, которые позволяют кристаллам данной формы ускорять некую химическую реакцию, сопровождающуюся выделением энергии и способствующую процессу кристаллизации *.