Выбрать главу

Вот так, да? Лишили детей радости – и счастливы? Ладно-ладно. Вы ещё пожалеете. Вот, ответьте-ка на простой детский вопросик. Электроны проводимости в металле сталкиваются с атомами, отчего векторы их импульсов изменяются – по миллионам раз в секунду. Каким же образом из этого хаоса чеканится идеальный порядок, при котором каждое значение импульса имеют не более двух электронов? Кто это, после каждого столкновения электрона с атомом, заботливо перетряхивает всё распределение по импульсам – для несметного числа электронов?

Знаете, дорогой читатель, в своё время физики, не лишённые чувства юмора, придумали «демона Максвелла»: маленькое хитренькое существо с шаловливыми ручками. Сидит этот демон на стенке, разделяющей два сосуда с газом, и вовремя приоткрывает маленькую заслоночку, чтобы из первого сосуда во второй пролетали самые быстрые молекулы. Без особенных затрат манипулирует распределениями молекул по энергиям! Так вот: рядом с чудищем Ферми-Дирака, демон Максвелла сдох бы сразу – от осознания своего ничтожества…

Кстати, чудище Ферми-Дирака должно трудиться не только в металлах, но и в диэлектриках – а ведь их свойства совсем другие. Почему другие? Казалось бы, чего тут вымудряться – у атомов металлов всего 1-2 внешних электрона, а у атомов диэлектриков их больше – 4-7. Чтобы поддерживать трёхмерную структуру твёрдого тела, атомы металла непременно должны циклически переключать свои химические связи с соседями. А у атомов диэлектриков хватает внешних электронов для того, чтобы поддерживать трёхмерную структуру на постоянных связях. Вот и получается, что металлы хорошо проводят электрический ток и тепло, а диэлектрики – плохо. Металлы легко отдают электроны (при фотоэффекте или термоэмиссии), а диэлектрики – не легко. Металлы пластичны, а диэлектрики – хрупки… Но нет! Тут, мол, так просто не надо! Тут надо «кванта-механически» - так, как учит нас зонная теория твёрдых тел! А она учит, что газ свободных электронов есть и в диэлектриках тоже. Почему же они не проводят электрический ток? Сейчас поясним! Считается, что в любом твёрдом теле каждый свободный электрон взаимодействует лишь со всеми положительными ионами решётки – а других свободных электронов как будто нет. По-научному этот прикол называется «одноэлектронное приближение». В этом прикольном приближении решается волновое уравнение – уже на полном сурьёзе – и получается, что энергии у свободных электронов в твёрдом теле не могут быть абы какими: есть, мол, разрешённые энергетические зоны, а есть запрещённые. У металлов, якобы, верхняя разрешённая зона заполнена не полностью – свободные электроны могут изменять векторы своих импульсов, потому там и возможен электрический ток. А вот у диэлектриков, якобы, верхняя разрешённая зона пуста, а следующая – отделённая запрещённой зоной – заполнена под завязку: в ней вообще нет свободных состояний. Для диэлектрика это весьма кстати: прикладываешь к нему разность потенциалов, а свободные электроны в нём и рады бы, мол, током потечь, да изменить векторы своих импульсов не могут. Бедненькие! Небось, сталкиваться с атомами решётки по миллионам раз в секунду – это они могут. Значит, могут-таки изменять свои импульсы – куда ж деваться. Ну, тогда вся надежда – на чудище Ферми-Дирака. Лишь ему по силам обеспечить, чтобы встречные токи электронов в диэлектрике – вверх-вниз, взад-вперёд и вправо-влево – всегда поддерживались равными. От профессионализма этого чудища дух захватывает!

Одно непонятно: каким образом это чудище догадывается, в каком образце ему работать, как в проводнике, а в каком – как в диэлектрике? Ведь зонная теория ни фига не предсказывает, какова будет электропроводность у конкретного материала. Расположению разрешённых энергетических зон соответствует набор подгоночных параметров, которые находят не иначе как эмпирически… И вот это, дяденьки, вы называете «пониманием того, как движутся электроны в металлах и полупроводниках»? И без этого, говорите, не было бы компьютеров и мобильных телефонов? Ох, шутники!

Да и не только электроны, мол, подчиняются квантовой статистике! Спин приписали и многим другим частицам, даже квантам света, которых с некоторых пор стали называть фотонами (только не спрашивайте теоретиков, что в фотонах вращается вокруг своей оси – за такие «некорректные» вопросы побить могут). Но у фотонов, дескать, статистика не такая, как у электронов: чихать фотоны хотели на принцип запрета. Т.е., им не запрещается быть в одном и том же состоянии – хоть всем до единого. «Более того, они к этому и стремятся – быть идентичными друг с другом», - уверяют нас теоретики. Да где вы такое видели, любезные? Ах, в лазерах! И только-то? Что-то у вас, вместо всеобщности, получается какой-то жалкий частный случай. Вообще, о статистике фотонов говорить смешно: параметры светового излучения определяются только условиями, при которых оно генерируется. Сделай одни условия генерации, «статистика» фотонов будет одна, а сделай другие – и «статистика» будет другая. В лазерах – то же самое. Вы пытаетесь убедить нас в том, что одночастотный (одномодовый) лазер – это воплощение величия статистики фотонов? За кого вы нас держите? Мы-то знаем, сколько пришлось помучиться экспериментаторам, чтобы добиться этого одномодового режима. Чтобы научиться «давить» все моды, кроме одной – ведь любая мода «пролазит» при малейшей возможности! Где же оно, стремление фотонов к идентичности друг с другом? Известный афоризм «Есть три типа лжи: ложь, наглая ложь, и статистика» - конечно, неполон: на четвёртое место нужно добавить квантовую статистику. А ведь её созидатели «хотели, как лучше»!