Впрочем, теоретики всегда «хотят, как лучше». В частности, теоретическая мысль неустанно работала над тем, чтобы странные свойства микромира не постулировались, как у Бора, а получались. Ясно же, что это «лучше»! То-то. И что же такое, лучшее, было предложено? Да было из чего выбирать: во-первых, матричная механика Гейзенберга, а, во-вторых, волновая механика Шрёдингера.
У Гейзенберга главная идея заключалась в том, чтобы использовать в математическом аппарате только такие величины, которые наблюдаются на опыте – в том числе и для объектов микромира. «Кто-нибудь видел, как электрон в атоме летает по орбите вокруг ядра? – вопрошал Гейзенберг. – Что, никто не видел? Ну, так и нечего сотрясать воздух насчёт этого! Ишь, орбиты выдумали! Лично я буду строить теорию исключительно на наблюдаемых величинах: на характеристических оптических частотах атомов и интенсивностях их спектральных линий!» - «Ну, и строй себе», - поощрили его коллеги. И ведь никто ему не подсказал, что он дал маху на первом же шаге, сделав не самый лучший выбор «наблюдаемых». С «оптическими частотами» - это ещё куда ни шло, хотя, вообще-то, здесь наблюдаются длины волн. Но вот под «интенсивностями» понимались эквивалентные амплитуды дипольных колебаний – в классическом смысле. Так никто же не наблюдал этих амплитуд! Потому что нет в атомах колебаний на оптических характеристических частотах! Ужас… Но это для нас – ужас. А для квантовой теории это нормально: нелепица на первом же шаге нисколько не отразилась на конечных результатах.
Задача решалась такая. Набору «наблюдаемых» величин ставился в соответствие набор абстрактных квантовотеоретических величин, и искался ответ на вопрос – можно ли, оперируя первыми, судить о вторых. Оказалось, что можно – бумага всё стерпела. Но при этом вылезло, на первый взгляд, странное правило комбинирования тех самых наборов. Приглядевшись повнимательнее, математики ахнули – да это же, мол, обычное правило перемножения матриц! Сама судьба, мол, указала на то, что для адекватного описания абстрактных квантовотеоретических величин следует использовать матричные представления! И понеслась она, матричная механика, вскачь да без остановок – давая столько пищи для теоретического ума, что озарения попёрли весёлым фейерверком. О чём были эти озарения? Поясняем. Логика была вот какая: если уж матрицы адекватно описывают абстрактные квантовотеоретические величины, то правила алгебраических операций с матрицами описывают что? – конечно же, физические процессы и закономерности в микромире! Зря, что ли, старались создатели матричной алгебры полвека назад? Поди ты, теперя всё пригодилось! Значит, делали так: брали обычное уравнение классической механики – ньютоново, или лагранжево, или гамильтоново – и подставляли в него, вместо классических величин, их матричные формы. И, трепеща от предвкушения восторга, искали решения у такого чуда-юда. А, когда решения находили, тут-то и начиналось самое увлекательное. Компоненты-то в матрицах были не простые, а комплексные, с мнимой единицей – и, после перемножений и других математических фортелей с матрицами, чудо-юдовы решения имели неслыханный ранее экзотический характер. И у каждой такой экзотики искали, для порядку, физический смысл. «Куда же ты, негодник, запрятался? Ау-у!» Искали этот смысл, искали – да всё у них какой-то сизифов труд получался. Никак не могли сообразить, что в математических операциях никакого физического смысла нет – он есть лишь в физических представлениях, да и то не во всех! Так и заглохла бы матричная механика, если бы не один скромный, но очень ценный подарок, который получила от неё теорфизика. В обычной математике, от перестановки мест сомножителей произведение не изменяется. А в алгебре матриц это не всегда так. Оказалось, что произведение матриц координаты и импульса зависит от того, какая из них является первым сомножителем, а какая вторым (такие парочки величин стали называть некоммутирующими). Из этой математической причуды и получилось то, что называется соотношением неопределённостей Гейзенберга: произведение неопределённости координаты на неопределённость импульса не может быть меньше, чем постоянная Планка. Если это соотношение породила математическая причуда, то почему оно сегодня считается фундаментальнейшим законом микромира? Было ли оно подтверждено экспериментами? Ещё как было! – только все эксперименты, подтверждавшие его, были мысленными. Например, знаменитый опыт с гейзенберговским микроскопом, который как дважды два показал, что не увидеть вам, глазастики, классической траектории у электрона! Отчего же такой кукиш получился? А оттого, что логика была железобетонная: чтобы различить такую мелочь, как электрон, нужно использовать кванты с малой длиной волны, т.е. гамма-кванты, но гамма-квант, мол, имеет большие энергию и импульс, и, рассеиваясь на электроне, шваркает его так, что безнадёжно портит его моцион. Одно было плохо у этой железобетонной логики: её возвели на зыбком песке – свято веря в то, что гамма-квант переносит импульс и отдаёт его часть электрону. Нашли, ёлки-палки, во что поверить! Впрочем, куда же им было без этой веры? Без неё вся ихняя квантовая теория рухнула бы в одночасье. Только на вере соотношение неопределённостей и держалось. Но держалось крепко. Почему? Ну, во-первых, здесь оказалась хороша уже простота формулировки. Даже дилетанты, не знавшие матричной механики, вполне могли рассуждать о физическом смысле принципа неопределённости. А, во-вторых, соотношение неопределённостей получилось ещё и для пары «энергия – интервал времени» - именно в этом варианте оно распахнуло перед теоретиками совершенно новые перспективы. Есть поговорка: «кондитер прикрывает свои ошибки кремом, архитектор – фасадом, врач – землёй». Ну, а теоретики стали с шиком использовать в аналогичных целях принцип неопределённости. Мы к этому ещё вернёмся.