Выбрать главу

Впрочем, один вопрос оставался: почему в камере Вильсона классическая траектория электрона, казалось бы, предстаёт во всей своей красе, а в атоме электрон ведёт себя совершенно не классически? Правда, никто не видел, как он там себя ведёт, как он там движется – и движется ли он там вообще! – но, судя по тому, как атомы излучали и поглощали, было бессмысленно использовать для атомарного электрона такие классические понятия как «положение», «скорость», «орбита». Пикантность ситуации заключалась вот в чём: те квантово-механические дебри, которые, на взгляд теоретиков, адекватно описывали внутренние атомные дела, работали в абстрактных многомерных пространствах и использовали некоммутирующие величины – поэтому они были принципиально несовместимы с классическими интуитивными пространственно-временными представлениями. Но, видите ли, других пространственно-временных представлений в наших бестолковках нет. Поэтому, когда даже иные продвинутые теоретики пытались въехать, со своей классической интуицией, в квантово-механическую область, результаты неизменно получались плачевные. Чтобы обрести утешение, можно было, например, сдвинуть себе крышу так, чтобы переделать свои пространственно-временные представления под квантово-механические понятия. Целые научные школы пошли по этому пути, страшно гордясь тем, что их ученики обретали возможность квалифицированно рассуждать о том, чего даже не могли себе представить. Дискуссия с этими детьми научного прогресса была заведомо дохлым номером…

Чтобы не остаться не у дел, Гейзенберг предложил, ладно уж, сохранить классические пространственно-временные представления, но установить предел, до которого они работают. Роль этого предела и играли соотношения неопределённостей. «Точнее, чем задают соотношения неопределённостей, о траекториях частиц говорить не имеет смысла, - объяснял Гейзенберг. – Поэтому и не говорите. Наплюйте, и ваш сон сразу нормализуется!» - «Как это – наплюйте? – не унимались коллеги. – Одно дело, если в каждый момент точные положения и импульс у частицы есть, но мы их не можем точно измерить. И другое дело, если их на самом деле нет. Так как же?» - «А какая разница, - растолковывал Гейзенберг, - если эти два случая всё равно неразличимы на опыте? Кстати, об опыте. Результаты измерений, производимых над микрообъектом, непременно выражаются на классическом пространственно-временном языке, но микрообъект-то ведёт себя принципиально иначе! Значит, только измерения и порождают ту реальность в микромире, которую мы можем переварить! А вы пристаёте с вопросом – «а что там на самом деле»! Когда никаких измерений не производится! Проспитесь, и всё пройдёт!» Отсюда оставался один шаг до жемчужины квантовой механики – т.н. вероятностной интерпретации.

Надо сказать, что ещё несколько раньше отличился Борн, подсобив Шрёдингеру с физическим смыслом волновой функции. По Борну, квадрат амплитуды волновой функции описывает распределение вероятности пребывания электрона в различных точках пространства – в частности, в различных точках внутри атома. Над борновской трактовкой даже историки хихикают: она основана на классическом представлении о локализации частицы, о её «положении» - а ведь всем разъяснили уже, что внутри атома классические представления не работают! Хоть говори, мол, хоть не говори – всё равно полезут с классическим рылом в квантовый ряд!.. Да, но давайте же заметим, что есть у борновской трактовки и достоинства: она ведь столько радости плутишкам принесла! Это благодаря ей, для атомарного электрона было окончательно отброшено классическое понятие «орбита», и введено квантовое понятие «орбиталь», или «электронное облако», по которому электрон как-то там размазан – в согласии с тем самым распределением вероятностей. Каким образом электрон в атоме движется, будучи размазнёй – над этим вопросом наука больше не мучается. Раньше хоть какие-никакие центробежные силы удерживали электрон от падения на ядро. А теперь, в случае с размазнёй и с отсутствием классического движения, центробежные силы превратились в полную бессмыслицу. Что же удерживает электронное облако от схлопывания на ядро? К такому вопросу академики готовы. «Один дурак может задать столько вопросов, - подмигивают они, - что десять институтов их за десять лет не разгребут!» Вот так у них: с шуточками, с прибауточками! Ну, а если серьёзно? «А если серьёзно, - поднимают они пальчик кверху, - то зачем электронному облаку схлопываться? Орбиталь такая, и всё тут!» Да… с умным видом дурачками прикинулись, и враз отпала необходимость объяснять, почему кулоновское взаимодействие зарядов в атоме не работает. Это какая же гора с плеч свалилась!