Выбрать главу

Фон Нейман понимал, что логика, описывающая явления квантовой физики, значительно отличается от той, к которой все привыкли. В логике высказываний существует конъюнкция, обозначаемая символом ^, она соответствует сочинительному союзу «и». Два высказывания A и В, соединенные конъюнкцией, записываются как А ^ В. Например, высказыванием А может быть «Луиджи 34 года», а В — «Луиджи брюнет», так что А ^ В читалось бы как «Луиджи 34 года, и он брюнет». Это утверждение будет верным, только если верны оба высказывания. Для конъюнкции соблюдается коммутативный закон, то есть порядок высказываний не влияет на их истинность или ложность. Сказать «Луиджи 34 года, и он брюнет» — то же самое, что «Луиджи брюнет, и ему 34 года». Но в квантовой физике все иначе.

Свет — это электромагнитная поперечная волна с двумя перпендикулярными плоскостями колебаний. Когда мы ставим поляризационный фильтр (такой, как в поляризационных очках) на пути луча света, то препятствуем прохождению одного из двух планов колебаний. Если же мы поставим два перпендикулярных поляризационных фильтра, свет не сможет пройти сквозь них.

Теперь возьмем третий фильтр, поляризованный по диагонали. Опытным путем было установлено, что если поставить его между двумя предыдущими, то свет сможет пройти. Разумеется, если мы поставим его после второго, свет не пройдет, так как ему помешают первые два. Назовем второй фильтр А, а третий — В и поставим за фильтрами экран. Условимся, что когда на экран падает свет, это означает «истина», когда экран остается темным — «ложь». В таком случае В^А было бы «истиной», так как при таком расположении фильтров экран загорается. Напротив, А л В было бы «ложь», так как свет не смог бы пройти. Таким образом, А ^ В ≠ В ^ А.

Все свои открытия в области логики, описывающей явления квантовой механики, Нейман изложил во втором издании «Математических оснований квантовой механики», опубликованном в 1936 году.

КРУШЕНИЕ ОСНОВ

Описанная выше логическая система предполагает некую механичность — в том смысле, что все операции с высказываниями следуют определенным правилам. Проще говоря, хоть это и не совсем правильно, важно следить за тем, что ты делаешь, но можно не думать о том, что ты делаешь. Можно создавать геометрические теоремы исключительно по правилам логики, не думая ни о прямых и плоскостях, ни о том, как они пересекаются и расходятся в пространстве. Мы могли бы «включить тумблер» и автоматически создать все возможные геометрические теоремы. Это сделало бы математику не только точной, но и совершенной наукой — наукой наук.

На протяжении 2000 лет аксиоматический метод в геометрии давал довольно хорошие результаты. Полагалось, что этот же метод можно применить и к другим областям науки. В конце XIX века арифметика уже обладала собственной системой аксиом, из которых можно было бы вывести целый ряд предложений, возводимых в ранг теорем. Этим и занимался Давид Гильберт, когда Гёдель сформулировал свою теорему, значительно ускорившую весь процесс.

В 1930 году Гёдель защитил докторскую диссертацию, написанную под руководством Ханса Хана (1879-1934). Она называлась «Полнота аксиом логического функционального исчисления» и была посвящена теме, тесно связанной с формалистской программой Гильберта. В начале сентября того же года Гёдель принял участие в конгрессе «Эпистемология точных наук», на котором также выступали Рудольф Карнап, Аренд Гейтинг, Джон фон Нейман и Фридрих Вайсман. Гёдель четко заявил о своих сомнениях в выполнимости программы Гильберта и изложил некоторые свои результаты, демонстрирующие неполноту арифметики. Немногим позже, в 1931 году, когда ему было всего 25 лет, Гёдель опубликовал знаменитую теорему о неполноте, которая подрывала сами основы математики. Несмотря на то что в теореме говорилось о сугубо специализированных вещах, она очень быстро получила широкий международный резонанс. Благодаря этому в 1933 году ученый получил звание приват-доцента Венского университета.

ТЕОРЕМЫ ГЁДЕЛЯ

Теория состоит из совокупности аксиом и правил логического вывода, которые позволяют установить ряд теорем исходя из этих аксиом. Теория считается противоречивой, когда в ее рамках можно доказать и некое утверждение, и противоположное ему. Если теория не противоречива, то говорят, что она последовательна. С другой стороны, в рамках теории должна быть возможность доказать любое утверждение, если оно истинное. В этом случае теория считается полной.