Выбрать главу

Трудно сказать точно, когда и где фон Нейман впервые заинтересовался математическим аспектом теории игр, поскольку у нас нет об этом ни письменных, ни устных свидетельств. В конце 1926 года, еще будучи стипендиатом Гёттингенского университета, он поразил всех, собрав конференцию по теории игр в помещении Математического общества университета. После нее фон Нейман написал статью, которую направил в журнал Mathematische Annalen. Работа была опубликована год спустя под заголовком Zur Theorie der Gesellschaftsspiele («А* теории стратегических игр»). Потом его будто бы оставил интерес к этой теме, но мы можем и ошибаться в своем предположении, потому что 18 лет спустя вместе с экономистом Оскаром Моргенштерном фон Нейман опубликовал книгу о теории игр, которая сегодня считается одной из самых важных из всего его наследия.

В своей первой работе ученый провел математическую формализацию антагонистических ситуаций, в которых участвуют два игрока. Особенно его интересовали возможные стратегии, которые могут развивать игроки в играх с нулевой суммой, по определению фон Неймана.

ОСКАР МОРГЕНШТЕРН

Немецкий математик и экономист Оскар Моргенштерн родился 24 января 1902 года в Гёрлице. В некотором смысле можно сказать, что он имел аристократическое происхождение: его мать была незаконной дочерью императора Фридриха III. В 1925 году Моргенштерн получил диплом по политическим и экономическим наукам в Венском университете. Благодаря Рокфеллеровской стипендии он провел четыре года в Принстоне, где получил постдипломное образование.

В 1929 году Моргенштерн вернулся в Австрию и вступил в Mathematische Kolloquium — группу математиков, возглавляемую Карлом Менгером (1902-1985), который очень критически относился к знаменитому Венскому кружку. В 1938 году нацистское правительство отняло у Моргенштерна кафедру в Венском университете, ему пришлось эмигрировать в США, и позже он стал гражданином Америки. В 1970 году Моргенштерн получил кафедру экономики в Принстоне. Он проработал там до самой смерти, 26 июля 1977 года. Как и Менгер, Моргенштерн четко высказывался в пользу аксиоматизации экономической теории, отрицая направления, частично поддерживаемые Венским кружком, в которых предпочтение для теории экономического равновесия отдавалось математическим инструментам, с успехом применяемым в физике (например, исчисление бесконечно малых). Таким образом, еще до того как фон Нейман и Моргенштерн встретились в Принстоне, у них были одинаковые представления о том, какой подход следует применить к экономике, чтобы возвести ее в ранг науки.

ИГРОКИ

Теория игр очень многогранна и может применяться не только в игровых ситуациях. Ее суть состоит в том, чтобы определить стратегию и формализовать принятие решений. Существует пример, который, благодаря своей необыкновенной простоте, часто используется, чтобы объяснить, какие цели преследует теория игр: разрезание торта.

Предположим, два человека должны поделить торт. Обычно в этом примере речь идет о детях: считается, что дети очень любят сладкое и потому хотят получить самый большой кусок, и это позволяет лучше понять ситуацию. Детский индивидуализм — идеальное качество для нужных нам игроков. Дележ торта будет происходить так: ребенок А будет резать торт, а ребенок В — первым выбирать себе кусок. Таким образом, ребенок А должен всегда помнить о ребенке В и о том, что после того, как он разрежет весь торт, В заберет себе самый большой кусок. Это условие является основополагающим для выбора наилучшей стратегии, которая, разумеется, состоит в том, чтобы разрезать торт на две равные части. Любой другой вариант опасен. Если, например, А подумает, что В — очень хороший и воспитанный ребенок и потому возьмет себе кусок поменьше, то он начнет резать торт на неравные куски. Но это решение содержит много рисков и основывается на догадках или дополнительной информации, которая не имеет ничего общего с игрой.

Это объяснение может показаться слишком простым, но в нем содержатся все ключевые элементы, определяющие сценарий, выбранный для теории игр. Ситуация типа «я играю только для того, чтобы приятно провести время, меня не беспокоит проигрыш, и вообще я могу позволить выиграть своему противнику» может быть вполне оправданной во многих сценариях, но не в теории игр. В ней игроки рассматриваются прежде всего как рациональные люди, чья цель — выиграть, а для этого им нужно думать о себе.