Мы имеем дело с неповторяющейся игрой, то есть с такой, в которую играют только один раз, и в ней нельзя принимать решения исходя из прошлых стратегий. К тому же это игра с нетрансферабельной полезностью и некооперативная, так как предполагается, что в ней нельзя устанавливать предварительные соглашения типа «если ты пойдешь со мной в кино, я заплачу за твой билет».
Стратегия минимакса привела бы нас к следующей ситуации.
Она на футбол | Она в кино | ||
Он на футбол | 1, 2 | 3, 3 | 3 |
Он в кино | 4, 4 | 2, 1 | 4 |
4 | 3 |
Самые большие потери для него составляют 3 и 4, поэтому его минимакс равен 3. Для нее — 4 и 3, и ее минимакс также равен 3. Это ситуация, в которой он идет на матч, а она в кино, где платежи составляют 3 и 3, что является лучшим вариантом для обоих. В данном случае стратегия минимакса не приводит к равновесию Нэша, так как один из игроков может поменять стратегию, чтобы получить больший выигрыш. Пока он в одиночестве идет на стадион, он может передумать и пойти в кино, получив таким образом больший платеж. Правда, при этом есть риск, что они оба передумают и понесут максимальные потери.
Сделав небольшое усилие, мы можем представить себе ситуацию, в которой все женщины любят футбол, а мужчины — кино. Но игра была бы в точности такой, как мы описали. Это значит, что игра симметрична. Внесем небольшое изменение, сделав ее асимметричной. Изменим порядок его предпочтений.
1. Они вместе идут на матч.
2. Он идет на матч, а она в кино.
3. Они вместе идут в кино.
4. Он идет в кино, а она на матч.
То есть он предпочитает пойти один на футбол, чем вместе в кино. В таком случае платежная матрица будет выглядеть следующим образом.
Она на футбол | Она в кино | |
Он на футбол | 1, 2 | 2, 3 |
Он в кино | 4, 4 | 3, 1 |
При такой перспективе понятно, что независимо от ее выбора он всегда выберет футбол, поскольку это будет выигрышным решением в любом случае. А для нее, учитывая, что он всегда выберет футбол, лучшим решением будет пойти вместе с ним. Тогда это и будет седловой точкой, равновесием Нэша, то есть стратегией, которую всегда выберут оба игрока. В таком случае говорится, что есть доминирующий выбор или что у игрока есть доминирующая стратегия, которая для него предпочтительнее всех остальных. Могут быть случаи, когда доминирующей стратегией располагают оба игрока. Парадокс предыдущей ситуации состоит в том, что эта эгоистичная доминирующая позиция «я пойду на матч все равно, с тобой или без тебя» приводит к лучшему результату, чем в предыдущем случае.
В статье «K теории стратегических игр», написанной в 1928 году, фон Нейман представил новый вариант игр с нулевой суммой и с количеством игроков большим 2. В их сценарии появилась новая переменная — возможные коалиции между игроками. Например, если имеется три игрока — А, В и С, — может случиться, что двое из них — А и В — объединятся против третьего, как если бы они были одним игроком, заключая договор о дележе выигрышей. В играх, изучавшихся до сегодняшнего дня, соперники не могли общаться друг с другом, чтобы заключать предварительные договоры. В этом случае говорят об играх с нетрансферабельной полезностью. Напротив, те игры, в которых игроки еще до начала игры могут общаться и заключать договоренности, называются играми с трансферабельной полезностью, или кооперативными.
Например, представим себе группу из трех друзей — А, В и С, — которым надо поделить между собой 100 евро. Решать, как будет происходить дележ, они будут простым голосованием, то есть большинством голосов. Возможными коалициями будут AB, АСУ ВСу а также четвертая — АВС. С такими исходными данными можно установить бесконечное количество платежей: