Выбрать главу

Дислокация является отсутствием закона только для данного уровня иерархической системы и его существованием для подсистемы. Если подсистему рассматривать как среду, симметрия которой не совпадает с симметрией почвенного тела, то в таком случае можно считать, что среда определит его дислокацию. Следовательно, система обязательно должна быть связана с подсистемой. Именно это и утверждается в знаменитой теореме К. Геделя, который доказал, что для каждой системы имеется подсистема, причем система не может быть описана только своими внутренними параметрами; хотя бы один из них заимствуется из подсистемы.

Отсюда следует, что почвенную иерархическую систему нельзя полностью формализовать; она должна включать какие-то аксиомы, принадлежащие подсистеме. Как «город» невозможно представить без «улицы», «улицу» без «дома», «дом» без «стен» и т. д., так и понятие «профиль» нельзя описать без понятия «горизонт», «горизонт» без «отдельности», «отдельность» без «агрегата». Каждое изменение размеров есть не простое преобразование геометрической фигуры, а скачок в иное состояние: например, из агрегатов формируется новое тело — отдельность, из отдельности еще одно новое тело — горизонт, из горизонтов — профиль почвы.

Следовательно, каждый уровень — это не механическое скопление элементов, а концентрированный синтез, не только включающий в себя сумму свойств, но и исключающий все лишнее, случайное при масштабном переходе от одного уровня к другому. Вероятно, такой переход от атомов к геологическим объектам имел в виду В. И. Вернадский (1975), когда писал: «В веществе планеты, в атомных его свойствах… мы должны искать причину многих геологических явлений». Другой пример: М. В. Волькенштейн (1965, с. 203) отмечает, что в идеале, решив задачу организации вещества, можно «предсказать микроскопическое строение мышцы, зная химическое строение ее белков».

Ю. А. Урманцев (1978, с. 190) по форме изомерных молекул альдогексозы воссоздал структуру соответствующего ей изомера листа липы. Он решил и обратную задачу: исходя из изомера контура листа липы, нарисовал структуру изомера альдогексозы. Воистину справедливы поэтические строки Валерия Брюсова: «Есть тонкие, властительные связи меж контуром и запахом цветка»!

Реализация закона структурных уровней в почвоведении может позволить, например, по форме одних изомеров-агрегатов определить состав соответствующих им других изомеров — органо-минеральных молекулярных соединений, а также решить обратную задачу. Пока это мечта, но ее осуществление позволит перейти к более глубокому пониманию почвенной иерархии. Ниже приводятся описания разных уровней организации почв.

Уровень I, атомарный. Размеры элементов около 1 А. Их свойства зависят от атомной структуры (рис. 8, 7). Энергетическое состояние элементарных зарядов связано с валентностью: ее повышение увеличивает заряды. Поэтому, например, преобладание в почвах водоразделов трех-четырехвалентных ионов, а в почвах понижений одно-двухвалентных обусловливает возникновение и распределение электрогенеза и электромагнитных полей.

Уровень II, молекулярный. Размеры элементов 1—10А, они образуют симметричные структуры (рис. 8, 77).

Если предположить, что информация о конфигурации агрегатов закодирована в структуре электронных оболочек молекул, то знание их архитектуры позволит предвидеть, будут ли эти агрегаты иметь ореховатую, призматическую или пластинчатую формы? Разнообразие форм почвенных агрегатов есть результат состояния равновесия, рассматриваемого как стремление электронов сочетаться в наиболее устойчивых и минимальных в энергетическом отношении положениях. Автоматизм запоминания структур на этом уровне, видимо, связан со свойством почв и наносов создавать магнитное поле; каждый новый этап наносо- и почвообразования характеризуется своей остаточной намагниченностью.

Рис. 8. Иерархия структурных единиц по размерам: от атомов (1 А) до почвенных агрегатов (1 см)

I — атомарный уровень: а — водород, б — углерод, в — азот, г — кислород, д — натрий, е — хлор.

II — молекулярный уровень: а — кислород ~ (mm) б — углекислый газ ~mm; в — вода 2m; г — хлористый водород ~ m; д — сероводород 2mm; е — бензол 6mm.

Электронно-микроскопические фотографии атомов: ж — белка каталазы, з — алюмо-иттриевого граната (Вайнштейн, 1979), и — хлорированного фталоцианина меди («Наука и жизнь», 1983, № 9, с. 55)

Рис. 8 (продолжение)

II — элементарные специфические ячейки: а — молекула ДНК, б — глинный минерал галлуазит, е, г — гуминовая кислота, IV — ядра конденсации коллоидных частиц: а — кристаллы бацилл, б, в — вирусы

Рис. 8 (продолжение)

V — первичные коллоиды- а — крупные амебоидные клетки, зажатые между грибными гифами, б — ловчее кольцо хищного гриба, в — колонии иловой бактерии, г — микробы, атакующие минеральное зерно (Аристовская, 1965); VI — ультра-микроагрегатный уровень: а, б — черноземы, в — серые лесные почвы, г — каштановые и подзолистые почвы, д — такыры, е — болотные и луговые почвы

Рис. 8 (окончание)

VII — микроагрегатный уровень: а — глинистые овальные агрегаты, б — углеподобные растительные остатки, в — сетчатая глинистая плазма, г — округлое образование с концентрической ориентировкой плазмы (Парфенова, Прилова, 1977) VIII — макроагрегатный уровень: а — додекаэдр, б — тетраэдр, в — гексагональная призма, г — куб, д — квадратная призма, е — тригональная бипирамида, ж — эллипсоид, з — моноэдр

Различная ориентировка окислов железа в шлифах, взятых из разновозрастных почв, доказывает, что биогеохимические процессы на данном и более высоком уровнях организации коррелируют с магнитными полями, которые периодически через века и тысячелетия меняют направленность. При этом в связи с полярной инверсией магнитного поля меняется видовой состав почвенной микрофауны и микрофлоры, увеличивается или уменьшается скорость размножения, переориентируется структура тончайших органо-минеральных частиц. Кроме того, в разных точках Земли намагниченность почв разная, особенно она высока на Дальнем Востоке. Это влияет на парамагнитный резонанс электронов (работы Е. А. Завойского, С. А. Алиева).

Уровень III, элементарные специфические ячейки размером 10—100 А с тождественными формами и параметрами блоков: диаметр 10–20 А, высота 10–30 А, расстояние между слоями по вертикали 2,3–3,6 А, число слоев, расположенных параллельно, 4–6; угол кручения создает спиральную пространственную правизну-левизну (рис. 8, III). Преобладают ячейки: а — молекулы ДНК, б — глинного минерала (галлуазита), в, г — гуминовой кислоты[11].

вернуться

11

б — по Чекину (1984), в—по Комиссарову, Логинову (197'1), г — по Китайгородскому (1984).