Наука не ограничивается описанием изолированных форм; главное — установить характер их сочетаний. Не так давно обнаружено не известное ранее явление периодической повторяемости сходных форм земной поверхности. На обширных просторах суши одинаковые почвенно-геологические узоры возникают неоднократно через равные расстояния. И. Ньютон говорил: «Природа проста и не роскошествует излишними причинами». Его слова подтвердились аэрокосмическими исследованиями. На земной поверхности по небогатой вариантами программе расставлено ограниченное число форм почвенно-геологических тел.
Каковы же причины образования на Земле тождественных почвенных форм? Почвенная система стремится к равновесию. Ее электрохимический потенциал уравнивается во всех частях. Установив законы электромагнитного взаимодействия природных тел, можно прогнозировать их эволюцию. Эта заманчивая перспектива требует, однако, осмысления причинности формообразования на конкретных примерах. Так, судя по рис. 16, в Казахстане мы имеем не единичное, а парное залегание почвенных тел. Создается впечатление, что, взаимодействуя на расстоянии в десятки и сотни километров, они одновременно в одном месте концентрируют, а в другом рассеивают вещество и энергию: в завитке спирали (а) аккумулируются соли за счет их выноса из спирали (б). На рис. 16, в показана структурная связь озер, взаимодействующих по синусоиде.
Эти взаимосвязанные структуры земной коры и почвенного покрова еще не научились отображать на картах. Поэтому часто остается загадкой, почему хозяйственное воздействие на одну часть территории отрицательно отражается на другой, казалось бы, от нее не зависящей. Несомненно, изучение комплементарных почвенных структур имеет большое практическое значение.
Образование почвенных спиралей можно объяснить с помощью геоатомной модели. Вернадского. Почвенный покров, видимо, устроен таким образом, что не может существовать без пары противоположно заряженных электричеством блоков земной коры — природных индукторов (см. рис. 16, а и б). Между ними устанавливается электромагнитное взаимодействие, способствующее направленному переносу химических элементов. Свойства и мощности создаваемых ими полей на каждой конкретной территории образуют характерный рисунок силовых линий. Эти линии отображаются в формах рельефа и почвенного покрова: они-то и фиксируются картографом.
Такую модель атомной геометрии пространства, вероятно, имел в виду В. И. Вернадский (1975), указывая, что симметрия земной коры количественно отвечает проявлению электронов. Видимо, и узоры почвенных ареалов отражают структуру электронных оболочек образующих их химических соединений: не случайны округлые формы солончака, шестиугольные — мерзлотной почвы, ромбические — гипсовой, прямоугольные — почвы на известняке.
Сейчас многих исследователей интересует проблема связи химического состава толщ Земли с вещественными свойствами почв. Разработаны методы поисков полезных ископаемых, основанные на предположении о том, что между почвой и месторождениями устанавливаются электромагнитные взаимодействия, способствующие переносу элементов из глубоких слоев в поверхностные.
Замечено, что почвы часто образуют специфические ряды, например солончаков и солонцов, по линиям тектонических разломов (см. рис. 16, а). Прежде думали, что такие случаи немногочисленны, поэтому их влияние на почвообразование мало. Напомним, что Земля покрыта густой и. правильной сетью трещин. По ним формируются не только месторождения, но и своеобразные почвы, а также сохраняются реликтовые и эндемичные виды растений и животных, располагаются исторические памятники культуры. Поэтому сейчас уделяется большое внимание образованию почвенных структур в связи с неотектоникой.
КЛАССИФИКАЦИЯ КРИВОЛИНЕЙНЫХ ФОРМ
Разнообразие овалов, эллипсов, спиралей затрудняет их классификацию. И. Гете писал: «Все формы похожи, и ни одна не одинакова с другой; и так весь хор их указывает на тайный закон…»
Закон формообразования продолжает оставаться тайной. Здесь еще много работы. Надо провести инвентаризацию всех имеющихся на нашей планете криволинейных фигур, затем увязать каждую из них с физико-химическими свойствами почв, определить симметрию явлений. Без четкой методики почвенного картографирования, обеспечивающей выявление геометрических свойств земной поверхности, не обойтись: геометризация не терпит неопределенностей.
Формы можно изучать и иначе: определить конечное число симметричных фигур расчетным путем, а затем искать аналоги на Земле и на других планетах. Если раньше, во времена И. Ньютона, законы природы записывались в виде дифференциальных уравнений, то теперь их вывод возможен с помощью теории симметрии. Г. Вейль (1968) отмечает, что «все априорные утверждения физики имеют своим источником симметрию». В почвоведении исходными, аксиоматическими, также должны стать принципы симметрии. Они — одни из самых общих в науке и возведены в ранг философской категории.
Проследим, как устанавливается структурный ряд форм и как можно выводить одну форму из другой. И. И. Шафрановский (1968) допускает аналогию фигур земной поверхности с такими вспомогательными образами, как вращение вокруг осей разных порядков. Так, на рис. 18, а ось L, характеризует асимметричный ареал любого вида, лишь бы при повороте на 360° он самосовместился. В таком случае говорят, что каждая асимметричная почвенная форма обладает бесчисленным количеством осей первого порядка, т. е. ∞L1. Данное обстоятельство делает ось L1 фундаментальной в теории групп симметрии, где ее принимают в качестве нулевого или единичного элемента группы. Однако она не определяет конкретную фигуру, а потому ее часто исключают как непригодную для классификации собственно форм.
Посмотрим, как образуются другие формы в ряду A (рис. 18). Так, можно получить геометрические образы, описываемые осями L2, L3, L4, L6 при вращении соответственно на элементарные углы в 180, 120, 90 и 60°. Это минимальные величины поворотов, при которых формы или их части совмещаются. При бесконечно малом угле ось характеризует окружность. Однако ряд рис. 18, а трудно использовать для классификации почвенных ареалов, так как в нем элементы симметрии получены не расчетным, а эмпирическим путем.
Рис. 18. Классификация форм земной поверхности разных авторов а — по Шафранавскому, б, в — по Миронову
Использованы: а — теория симметрии, б — декартова система, в — комплексное число с элементами теории симметрии
Основная задача состоит в теоретическом выводе элементов симметрии. Такую попытку сделал Ю. П. Миронов (1975, 1982), опираясь на опыт Д’Арси Томпсона. Сначала он изучал геометрию геологических тел, задавая точку z на плоскости в полярной системе координат в виде z={r, φ}. Деформируя окружность (sin t) возведением ее в степень sinn t при ограниченных значениях n, Миронов получил ряд исходных форм (рис. 18, б).
Во множестве {sinn t} оказалась форма куриного яйца (sin2 t), над выводом формулы которой математики бьются не одно столетие («Просто, как яйцо», Наука и жизнь, 1983, № 10, с. 122). Но в нем отсутствует эллипс, который часто встречается в природе и без которого классификация форм будет неполной. Поэтому было сделано заключение, что полярная система координат не может решить задачу вывода ряда форм, так как она не дает все возможные реальные конфигурации. Следовало искать другие расчетные пути.
Эти поиски привели к использованию комплексного числа, но в общей единой математической записи: Zn = x+iny, где вращение осуществляется п раз. При заданных значениях п получается семь элементов симметрии: