Теперь сравним рецепторы сетчатки с пикселями сенсора камеры.
Размер наружной части рецептора, содержащей светочувствительный пигмент, равен 1 ÷ 2 микрон для палочки или 1 ÷ 5 микрон для колбочки. Размер пикселя сенсора равен 2.5 ÷ 8 микрон, размер зерна фотопленки: 0.05 ÷ 3 микрон.
Плотность палочек: 40–150 тысяч на мм2, колбочек: 5–150 тысяч на мм2. Плотность фоторецепторов сенсора – до 40 тысяч на мм2. На цветной фотографии: около 30 тысяч точек на мм2.
Чувствительность: 5–14 фотонов для палочки и в 100–1000 раз больше для колбочки. Для сенсора – несколько фотонов (сенсор ICCD, intensified CCD, усиленный ПЗС-сенсор), для зерна высокочувствительной фотопленки – 4 фотона.
Разрешающая способность: Количество рецепторов сетчатки одного глаза – 130 миллионов. Количество пикселей сенсора обычного фотоаппарата – до 30 миллионов. Максимальный размер кадра на сегодняшний день имеют 80-мегапиксельные матрицы в цифровых задниках Phase One iq280: 53,7×40,4 мм. Разрешающая способность сенсора: от 200 линий на миллиметр (у крупноформатных цифровых фотокамер) до 70 линий на миллиметр (у web-камер и мобильных телефонов).
Получается, что по количеству пикселей и их средней плотности фотоаппараты догоняют глаз. Но вот разрешающая способность сетчатки в центре фовеа пока что в 2–8 раз выше, чем у сенсоров современных камер (если сравнивать только плотности рецепторов и пикселей, без учета «оптики»).
Как воспринимается яркость сцены фотоаппаратом и зрительной системой человека?
Зависимость воспринимаемой глазами яркости от фактической яркости предмета нелинейна. Для того чтобы почувствовать изменение яркости в темных тонах, достаточно очень небольшого изменения фактической яркости. Тогда как для того, чтобы почувствовать изменение яркости в светлых тонах, потребуется более сильное изменение фактической яркости. В такую нелинейность вносят свой вклад следующие факторы:
• переключение рецепторов: при низких яркостях работают палочки, а при более высоких яркостях палочки полностью насыщаются и работают только колбочки; на промежуточных уровнях яркости функционируют и те и другие;
• истощение пигмента рецепторов на высоких уровнях яркости;
• изменение чувствительности сетчатки к свету, осуществляемое на уровне нейронов сетчатки;
• когнитивные механизмы – регулирующие восприятие яркости на основании знания наблюдателем содержимого сцены. Например, мы избегаем смотреть на солнце или на огонь электросварки незащищенными глазами.
Благодаря всему этому наши глаза могут видеть в диапазоне яркостей, границы которого различаются в 224 раз, то есть более чем в 16 миллионов раз! При этом роль сужения зрачка относительно невелика. Максимальные изменения зрачка для здорового человека – от 1,8 мм до 7,5 мм, что соответствует изменению площади зрачка всего в 24 раз.
Теперь о яркости в числах.
Динамический диапазон (диапазон яркостей), воспринимаемый человеком: дневное зрение – 15 000: 1 (13 EV, exposure value), ночное зрение – 10 000 000: 1 (27 EV). Для сравнения, темная ночь: -6 EV, яркий солнечный свет: +22 EV. Контраст, воспроизводимый на бумаге: 8 EV, на пленке: 8–14 EV, воспринимаемый сенсорами цифровых камер: 8–14 EV, на экране монитора: 10 EV.
Снова сравним с фотоаппаратом. Для сенсора камеры зависимость воспринимаемой яркости от фактической яркости предмета линейна, за исключением краев воспринимаемого диапазона. Поэтому диапазон яркостей камеры с 14-битной разрядностью всего лишь 214, что менее 17 тысяч. Но и это только теоретически. На практике из-за наличия шума этот диапазон снижается до 29, что равно 512.
Следовательно, наши глаза лучше приспособлены для среды с широким диапазоном яркостей, чем наши фотоаппараты. Правда, нужно уточнить, что перепад яркостей, для которого темновая адаптация не превышает десятых долей секунды, составляет только 10–13 EV. Чтобы получить значение 27 EV для ночного зрения, приведенное выше, необходимо адаптироваться в течение получаса и более.
Фотоаппарат строит попиксельное отображение 3-мерного пейзажа на плоскость кадра по законам прямой линейной перспективы, которое затем обрабатывается программным обеспечением камеры и, возможно, пользователем с помощью компьютера, и воспроизводится на экране монитора или на каком-нибудь носителе (бумаге, пленке, ткани).
Система «глаз-мозг» превращает 3-мерный пейзаж в серию «кадров», каждый из которых содержит резкое отображение на плоскость (точнее, на внутреннюю поверхность сферы) только небольшого кусочка рассматриваемого пейзажа. Далее, структура границ яркостей и границ цвета каждого кадра превращается в частотно модулированный сигнал и подвергается Фурье-анализу с целью обнаружения только самых важных для мозга деталей. Вся остальная информация об изображении, вероятно, пропадает (не запоминается), а в случае появления необходимости – домысливается мозгом с помощью предыдущих знаний, а также интерполяции поступивших данных об изображении.