Выбрать главу

Тот факт, что численный результат может и должен зависеть от соотношений между объектом и наблюдателем, не только вполне в духе сегодняшней физики, но и являет собой достойный подражания пример.

Большинство объектов, рассматриваемых в этой книге, похожи на наш нитяной клубок: они демонстрируют целую последовательность различных эффективных размерностей. Однако существует одно важное отличие: некоторые недостаточно определенные переходы между зонами с отчетливо выраженной размерностью интерпретируются здесь как фрактальные зоны, внутри которых D>DT.

ПРОСТРАНСТВЕННАЯ ОДНОРОДНОСТЬ, МАСШТАБНАЯ ИНВАРИАНТНОСТЬ И САМОПОДОБИЕ

Оставим пока размерности в покое и приготовимся к разговору о симметрии, для чего вспомним о простейших формах, с которых начинается евклидова геометрия: о линиях, плоскостях и пространствах. И о простейших физических задачах, возникающих при однородном распределении какой-либо физической величины — плотности, температуры, давления или скорости.

Однородное распределение вдоль линии, на плоскости или в пространстве обладает двумя очень привлекательными свойствами. Оно инвариантно при смещении и при изменении масштаба. При переходе к фракталам обе инвариантности неизбежно подвергаются модификации и/или/ ограничению области их действия. Следовательно, наилучшими можно считать те фракталы, которые демонстрируют максимальную инвариантность.

В случае смещения различные участки траектории броуновского движения частицы не могут быть точно совмещены друг с другом, как, например, могут быть совмещены различные участки прямой линии. Тем нe менее, можно считать, что эти участки совместимы в статистическом смысле. Почти все фракталы, представленные в этой книге, в той или иной степени инвариантны при смещении.

Более того, большинство этих фракталов инвариантны при некоторых преобразованиях масштаба. Назовем их масштабно-инвариантными фракталами. Фрактал, инвариантный при обычном геометрическом преобразовании подобия, называется самоподобным.

В составном термине масштабно-инвариантные фракталы прилагательное служит для смягчения существительного. Основной термин фрактал подразумевает неупорядоченность и относится к структурам ярко выраженной иррегулярности, тогда как определение масштабно-инвариантный намекает на некоторый порядок. Если же под основным термином понимать масштабную инвариантность, предполагающую строгий порядок, то фрактал сыграет роль модификатора, призванного исключить всякий намек на прямые и плоскости.

Не следует превратно понимать стремление допустить однородность и масштабную инвариантность. Как и в случае обыкновенной геометрии природы, все мы прекрасно осведомлены о том, что ничто в окружающем нас мире не является ни строго однородным, ни масштабно-инвариантным. Обыкновенная геометрия рассматривает прямые как предварительные модели. Так же и в механике понятие однородного прямолинейного движения является лишь первым шагом.

Те же соображения применимы и к изучению масштабно-инвариантных фракталов, однако в этом случае первый шаг получается значительно более длинным, поскольку вместо прямых линий мы имеем огромное множество самых разнообразных возможностей, лишь самые яркие примеры которых вошли в эту книгу. Не следует удивляться тому, что масштабно-инвариантные фракталы используются здесь лишь как источники первых приближений к естественным структурам, подлежащим рассмотрению. Скорее, удивиться нужно тому, насколько поразительно верными оказываются эти первые приближения.

Нелишним будет напомнить, что идея самоподобия далеко не нова.. В случае с прямыми эта идея пришла в голову еще Лейбницу примерно в 1700 г. (см. раздел МАСШТАБНАЯ ИНВАРИАНТНОСТЬ ПО ЛЕЙБНИЦУ И ЛАПЛАСУ в главе 41). Ее математическому обобщению, не ограничивающемуся прямыми и плоскостями, скоро исполнится сто лет, хотя реальной его важности до настоящего эссе никто не признавал. Физики тоже давно знакомы с самоподобием — с тех пор, как в 1926 г. Льюис Ф. Ричардсон предположил, что турбулентность в широком диапазоне масштабов может быть разбита на самоподобные завихрения. Поразительные аналитические следствия этой идеи в приложении к механике были сформулированы Колмогоровым в работе [276]. Что касается масштабной инвариантности, то ее аналитические аспекты связываются в физике с понятием ренорм-групп (см. главу 36).