Поскольку факты установлены, невредно было бы поразмышлять об их возможных причинах. Мы полагаем, что разлом можно рассматривать как некую нетипичную форму перколяции. Известно, что, по мере того, как образец растягивается в разные стороны, полости, которые неизбежно присутствуют в образце вокруг посторонних включений, увеличиваются в размерах; в конце концов, эти полости сливаются между собой и разделяют образец на части. Если бы увеличение размеров той или иной полости не зависело от места ее расположения, мы получили бы перколяцию, подобную описанной в главе 13. Следовательно, размерность поверхности разлома принимала бы некое универсальное значение, не зависящее от материала. В действительности же, как только исходная полость дорастет до слияния с соседними полостями, возрастает нагрузка на оставшиеся связи и последующая скорость роста полости изменяется в зависимости от ее положения в образце. Эти изменения, безусловно, напрямую зависят от структуры материала, и, следовательно, размерность D совсем не обязана быть универсальной.
Формы облачных и дождевых областей [646, 648]
Глядя на замечательное соотношение Лавджоя, связывающее площадь и периметр облаков (см. рис. 169), невольно задаешься вопросом, нельзя ли в этом случае проделать то же, что мы проделали в главе 28 с земным рельефом, - я имею в виду построение фрактальных карт облачных и дождевых областей, которые нельзя будет ни вооруженным глазом, ни с помощью каких-либо измерений отличить от настоящих метеорологических карт.
Важный ингредиент для случая дождевых областей находим у самого Лавджоя [646], который обнаружил, что промежутки между выпадениями осадков следуют в точности тому же гиперболическому распределению вероятностей, что и разрывности в изменении цен на товарных биржах согласно [341] (см. главу 37).
Наше с Лавджоем совместное исследование [648] построено именно на этом фундаменте. Мы показываем, что гиперболически распределенные разрывности вполне согласуются с широко известным наблюдением, что разрывности в выпадении осадков возникают вдоль почти прямолинейных «фронтов». Для сохранения масштабной инвариантности вводится соответствующий перечень показателей, напоминающий те, что используются в теории критических феноменов, и в еще большей степени показатели турбулентности, предложенные в моей работе [387]. Полученные результаты, надо сказать, вызывают самые положительные эмоции.
Масштабная инвариантность, фракталы и землетресения [637, 638, 639, 619]
В главе 28 мы говорили о том, что земной рельеф представляет собой масштабно-инвариантную фрактальную поверхность и его можно генерировать посредством наложения грубых «ошибок». Тем, кто согласен с подобными утверждениями, гораздо легче принять идею того, что землетрясения (которые представляет собой не что иное, как динамические изменения рельефа) самоподобны, т.е. закономерности, описывающие время их возникновения, территориальный охват и силу, не связаны с каким-либо особым масштабом, а геометрия землетрясений фрактальна. Идея эта является главным посланием, которое вынесет для себя интересующийся фракталами читатель из ознакомления с работами [637, 638, 639, 619] (рекомендую).
А для усмирения гордыни советую подумать о том, что масштабную инвариантность землетрясений обнаружил Омори еще сто лет назад; впрочем, авторы большинства статистических исследований землетрясений по-прежнему настаивают на том, что возникновение землетрясений следует пуассоновскому распределению. Что ж, вряд ли следует ожидать чего-то хорошего (о чем я уже рассуждал в главе 42), когда наука уступает общественному давлению, которое поощряет моделирование и теоретизирование и презирает «простое» описание без «теории».
Фрактальные границы в литиевых аккумуляторах [644, 645]
Электрическому аккумулятору полагается хранить электроэнергию в больших количествах и выдавать ее с нужной скоростью. Так как остальные характеристики зафиксированы, аккумулирующая способность зависит только от объема аккумулятора, скорость же разрядки является характеристикой поверхностей. Об этом знает всякий, кто знаком с фракталами (см. главы 12 и 15), и отсюда же Ален Ле Меоте заключил, что достижение баланса между аккумулирующей способностью и скоростью разрядки являет собой фрактальную задачу.