Выбрать главу

И все же в данном эссе я избегал чисто специальных проблем. Оно адресовано прежде всего людям науки вообще, а не только специалистам-математикам. Представление каждой новой темы начинается с конкретных примеров. Читатель самостоятельно и постепенно раскрывает для себя природу фракталов — такой путь представляется мне более результативным, нежели внезапное озарение с подачи автора.

А что касается искусства, то оно ценно само по себе.

2. ИРРЕГУЛЯРНОЕ И ФРАГМЕНТИРОВАННОЕ В ПРИРОДЕ

«Красота всегда относительна... Не следует... полагать, что берега океана и впрямь бесформенны только потому, что их форма отлична от правильной формы построенных нами причалов; форму гор нельзя считать неправильной на основании того, что они не являются правильными конусами или пирамидами; из того, что расстояния между звездами неодинаковы, еще не следует, что их разбросала по небу неумелая рука. Эти неправильности существуют только в нашем воображении, на самом же деле они таковыми не являются и никак не мешают истинным проявлениям жизни на Земле, ни в царстве растений и животных, ни среди людей.» Эти слова английского ученого XVII в. Ричарда Бентли (источник вдохновения для начальных строк настоящего эссе) свидетельствуют о том, что идея объединить формы берегов, гор и небесных объектов и противопоставить их евклидовым построениям возникла в умах людей уже очень давно.

ИЗ-ПОД ПЕРА ЖАНА ПЕРРЕНА

Прислушаемся теперь к голосу, обладатель которого несколько более близок к нам — как по времени, так и по роду занятий. Прежде чем мы приступим к обсуждению неправильности и фрагментированности береговых линий, броуновских траекторий и других рисунков Природы, исследуемых в настоящем эссе, позвольте мне представить на ваш суд несколько цитат из одной статьи Жана Перрена [468] в моем вольном переводе. Последующие работы Перрена, посвященные броуновскому движению, принесли ему Нобелевскую премию и стимулировали развитие теории вероятности. Я же намерен привести здесь некоторые строки из его раннего философского манифеста. Хотя этот текст в несколько измененном виде появился позднее в предисловии к книге «Атомы» [470], заметили его, похоже, только тогда, когда я процитировал его в первом (французском) издании моего эссе. Я слишком поздно обратил внимание на это обстоятельство, чтобы оно как-то существенно повлияло на книгу, однако этот отрывок вдохновлял меня в час нужды, не говоря уже о том, что он являет собой прекрасный образец ораторского искусства.

«Общеизвестно, что хороший учитель, давая ученикам строгое определение непрерывности, покажет прежде, что лежащая в основе

этого понятия идея хорошо им знакома. Он построит на доске какую-нибудь вполне непрерывную кривую и, перемещая вдоль нее линейку, скажет: «Как видите, касательная существует во всех точках кривой». Или, например, для того, чтобы ознакомить учеников с понятием истинной скорости движущегося объекта в некоторой точке его траектории, учитель говорит: «Вы, разумеется, понимаете, что среднее между значениями скорости в двух соседних точках не изменяется сколько-нибудь существенно при приближении этих точек друг к другу на бесконечно малое расстояние». И многие люди, полагая, что для некоторых всем знакомых движений такой взгляд достаточно точно отражает положение вещей, не желают замечать, что все не так просто.

Математики, однако, прекрасно понимают, что попытка показать при помощи построения кривых то, что каждая непрерывная функция имеет производную, по меньшей мере, наивна. Хотя дифференцируемые функции и являются самыми простыми, они все же представляют собой исключение. Говоря языком геометрии, кривые, не имеющие касательных, могут считаться правилом, в то время как правильные кривые — такие, например, как окружность — любопытным, но весьма частным случаем.

Изучение же общего случая представляется, на первый взгляд, остроумным, но совершенно искусственным упражнением для праздного интеллекта — этакое стремление к абсолютной точности, доведенное до абсурда. Те, кто впервые слышит о кривых без касательных или о функциях без производных, часто склонны полагать, что в Природе не существует ни подобных сложных конструкций, ни даже намека на них.

Это, однако, неверно — математики со своей логикой оказываются ближе к реальности, нежели физики с их практическими представлениями. В качестве иллюстрации к этому утверждению взглянем непредвзято на некоторые экспериментальные данные.