(1) полноты, т.е., «можно доказать все истинные утверждения», и
(2) совместимы, т.е. «нельзя доказать ни одно ложное утверждение».
По всей видимости, люди часто не понимают, что полнота — это достоинство не такое уж редкое. Оно является тривиальным следствием любой процедуры исчерпывающего поиска, поэтому всякая система может быть переведена в категорию «полных», если к ней подсоединить любую другую полную систему и после этого чередовать этапы вычислений. Совместимость — понятие более тонкое, оно предполагает отсутствие противоречивости в наборах аксиом. Мне кажется, что в системах искусственного интеллекта подобного требования не следует придерживаться, ибо ни одна система естественного интеллекта не является полностью совместимой. Важно то, каким образом человек разрешает парадокс или находит выход из конфликтной ситуации, каким образом человек учится на своих и чужих ошибках, как распознает и отбрасывает всевозможные несоответствия.
Подобные неправильные представления привели к тому, что теорема неполноты Гёделя стимулировала появление совершенно беспочвенных утверждений о различиях между человеком и машиной. Никто, видимо, не заметил ее более «логичной» интерпретации, именно, что стремление к совместимости налагает определенные ограничения.
Конечно, есть и будут различия между людьми (которые доказуемо несовместимы) и машинами, конструкторы которых создавали их на основе этого принципа. Но для машин вовсе не является необходимым программирование на основе только совместимых логических систем. Те же философские рассуждения, которые выше не были нами приведены, но, тем не менее, подразумевались, использовали это ненужное допущение. (Полученные не так давно результаты, показывающие совместимость современной теории множеств, рассматриваются мною не как доказательство потенциальной возможности ее использования в системах искусственного интеллекта, а, наоборот, как подтверждение ее вероятной неприменимости для наших целей.)
Когда одного известного математика предупредили, что, сделав еще один логический шаг в своем доказательстве, он придет к парадоксу, тот совершенно серьезно ответил: «А я не буду делать этот шаг». Значительная часть наших обычных (и даже математических) знаний напоминает знания людей — представителей опасных профессий, которые должны очень хорошо знать, когда и какие действия следует считать неразумными. В наших условиях нужно дать ответы на следующие вопросы: в каких случаях возможно применение тех или иных видов аппроксимаций; когда различные критерии могут предопределить получение различимых оценок; какие утверждения и какие типы ссылок допустимы и другое. Концепции, основанные на свойстве транзитивности, представляют значительный интерес и от них вовсе не следует отказываться лишь потому, что еще не найдена удовлетворительная система аксиоматизации. Подводя итоги, отметим следующее.
1. Логические рассуждения недостаточно гибки и не могут служить основой для мышления; они представляются мне в виде набора эвристических методов, эффективных только тогда, когда применяются к упрощенным схематическим планам. Совместимость, требуемая логикой, в иных аспектах обычно не обеспечивается и, вероятно, даже нежелательна, поскольку совместимые системы по своим возможностям будут, видимо, недостаточно мощными.
2. Я сомневаюсь в возможности эффективного представления обычных знаний в виде совокупности простых, независимых, «истинных» утверждений.
3. Стратегия полного отделения конкретных знаний от общих правил вывода слишком радикальна. Мы нуждаемся в разработке более непосредственных способов соединения фрагментов знаний, позволяющих дать совет, каким образом их следует использовать.