Выбрать главу

Логистический метод, используемый, например, при построении такой известной системы для решения задач, как STRIPS (P.Файкс, Н.Нильсон, 1973), основан на привлечении языка исчисления предикатов первого порядка для формирования модели внешнего мира, на использовании понятий пространства состояний, а также методов доказательства теорем и эвристических методов как основных механизмов поиска решений. Модель в данном случае представляет собой систему аксиом — предложений языка исчисления предикатов первого порядка, определяющую всю совокупность объектов, характеристик и свойств внешнего мира робота, существенных для его функционирования. В случае относительно простых, статических сред системы аксиом выглядят достаточно компактно, а существующие поисковые процедуры (такие, как метод резолюций и его модификации, эвристика «анализа целей и средств» и др.) оказываются мощным средством для выработки планов действий. Но как только возникает задача создания машинной модели реальной, динамичной, недетерминированной внешней среды, то логистический подход оказывается несостоятельным вследствие резкого усложнения как самих конструкций моделей, так и формализованного представления в них смысловых отношений между элементами внешней среды.

Кроме того, с усложнением внешнего мира число формализующих его аксиом лавинообразно растет, что приводит не просто к громоздкости машинной модели окружающей среды, но к ряду принципиальных трудностей. Они связаны, во-первых, с выбором только того подмножества из всего множества аксиом, которое имеет непосредственное отношение к решаемой в данный момент времени задаче, и, во-вторых, с активизацией и выполнением лишь тех дедуктивных процедур, которые существенны для получения конечного результата. Проблема заключается совсем не в том, чтобы из множества выведенных отобрать нужные теоремы, а в том, чтобы не выводить ненужных.

Аналогичные по характеру трудности возникают при использовании теоретико-графового метода, в рамках которого модель внешнего мира представляется в виде графа, узлы которого соответствуют возможным состояниям внешней среды, а дуги — возможным действиям, переводящим систему из одного состояния в другое.

Ограничены возможности описания реального мира и с помощью вектор-функций, определенных на нормированных пространствах, что имеет место в случае методов, использующих основные положения теории автоматического управления (Ф.М.Кулаков,1976).

Одним из возможных путей решения проблемы явился подход, предполагающий использование семантических связей между понятиями, включенными в модель внешнего мира и учет прагматики внешнего мира. Это нашло свое отражение в исследованиях советских ученых, например, П.М.Амосова в области развития М-сетей, Д. А. Поспелова, В. Н. Пушкина и Ю. И. Клыкова по ситуационному управлению, а также ряда зарубежных специалистов, в том числе Р.Шенка по теории семантической зависимости (conceptual dependency), Дж. Уилкса в области семантики предпочтений (preference semantics), Ч. Ригера по теории семантических наложений (conceptual overlays) и др.

Наиболее значительной среди появившихся за последние годы была теория фреймов (frames) M. Минского, привлекшая к себе пристальное внимание специалистов в области искусственного интеллекта (Р. Шенк, Р. Абельсон, 1975; Дж. Лаубш, 1975; Дж. Майлопулос, П. Коэн, А. Борджида, Л. Шугар, 1975; Д. А. Поспелов, 1976; Д. А. Поспелов, Е. Н. Ефимов,1977; Н. Н. Перцова,1977 и др.). Впервые теория была опубликована в 1974 г.

В своей теории М. Минский отказался от попыток формировать модель внешнего мира на основе разрозненных, отдельных фактов или понятий. Центральным моментом является его утверждение о том, что любая машинная модель, отражающая сложности реального мира, должна строиться в виде достаточно большой совокупности определенным образом сформированных данных — фреймов, представляющих собой модели стереотипных (часто повторяющиеся) ситуаций. Ситуация понимается здесь в обобщенном смысле, т. е. это может быть действие, рассуждение, зрительный образ, повествование и т.д. Фрейм представляет собой не одну конкретную ситуацию, а наиболее характерные, основные моменты ряда близких ситуаций, принадлежащих одному классу. В переводе с английского frame означает скелет, остов, рамка, что лишний раз подчеркивает общность представленных в нем сведений о моделируемом явлении. Графически фрейм можно изобразить в виде сети, состоящей из узлов и связей между ними. Каждый узел представляет собой определенное понятие, которое — и в этом заключается основной смысл теории — может быть, а может и не быть задано в явном виде. В последнем случае оно может быть конкретизировано в результате процесса согласования данного фрейма с некоторой конкретной ситуацией, имеющей место во внешнем мире. Незаданные в явном виде узлы называются терминалами. Они образуют нижние уровни графовой структуры, тогда как на верхних уровнях располагаются понятия, которые всегда справедливы в отношении представляемой данным фреймом ситуации. Таким образом, совокупность заданных в явном виде узлов — понятий образует основу для «понимания» любой конкретной ситуации из определенного для данного фрейма класса ситуаций. «Понимание» происходит путем конкретизации терминалов и согласования возможных для каждого из них понятий с вполне определенной, существующей во внешнем мире обстановкой. Центральным моментом является использование одних и тех же терминалов различными фреймами, что позволяет координировать информацию, собираемую из разных источников. Группы связанных между собой фреймов объединяются в системы, которые могут отражать действия, причинно-следственные связи, изменения понятийной точки зрения и т. д.