Рассмотрим проблему более внимательно. Предположим, что мы выполняем синтаксический анализ регулярного выражения "ab". Его нужно было бы проанализировать в качестве <выражения>, что означает анализ в качестве <члена>, затем <коэффициента>, затем <элемента>, а затем <символа>. В результате была бы выполнена обработка фрагмента "а". Затем грамматический разбор был бы продолжен, пока снова не было бы достигнуто определение <члена>, в котором говорится, что за первым <коэффициентом> может следовать еще один <член>. Продолжая анализ продукции, мы идентифицируем фрагмент "b" как <символ>, и на этом выполнение задачи завершается.
Все сказанное звучит достаточно просто. Так в чем же трудность? Выполним эти же действия для выражения "(а)". На этот раз синтаксический анализ продукций выполняется до тех пор, пока не будет достигнуто определение, согласно которому <элемент> может состоять из "(и, за которой следует <выражение>, а за ним ")". Таким образом, обработка "С завершается и снова начинается с синтаксического анализа верхней грамматической конструкции - < выражения>. Снова выполним нисходящий анализ: <выражение>, затем <член>, затем <коэффициент>, затем <элемент> и, наконец, <символ>. В результате выполняется обработка фрагмента "а". Снова возвращаясь к началу, мы встречаем альтернативное определение продукции <член>. Так почему бы на этот раз нам не обратиться к альтернативной ветви и не попытаться выполнить синтаксический анализ конкатенации?
Очевидно, что подобное делать нельзя, поскольку на этот раз текущим символом является ")". В первом примере мы решили выполнить синтаксический анализ конкатенации, поскольку текущим символом был "b", но на сей раз им является ")". Прежде чем решить, выполнять ли синтаксический анализ еще одного сцепленного <члена>, необходимо быстро проанализировать текущий символ. Если его можно считать началом еще одного <элемента>, то мы продолжаем обработку и анализируем его в качестве такового. Если же нет, мы считаем, что что-то другое (а именно вызывающий метод) выполнит с ним какие-либо действия, и что конкатенация отсутствует.
Этот процесс называют разрывом грамматического правша (breaking the grammar). Мы должны предположить, что если в данном случае конкатенация имеет место, текущий символ будет служить начальным символом элементах. Иначе говоря, если текущий символ - ".", "(" "[", или обычный символ, мы должны выполнить синтаксический анализ еще одного <члена>. Если же нет - мы считаем, что конкатенация отсутствует, и осуществляем выход из метода ParseTerm. Для определения того, что нужно делать с продукцией <член> (продукцией "более высокого" уровня), мы используем информацию продукции <элемент> (продукции "более низкого" уровня). Излишне повторять, что необходимость в таком подходе возникает только по причине отсутствия метасимвола конкатенации.
Код двух последних методов класса синтаксического анализатора регулярных выражений: метода ParseTerm и интерфейсного метода Parse показан в листинге 10.6.
Листинг 10.6. Методы ParseTerm и Parse
procedure TtdRegexParser.rpParseTerm;
begin
rpParseFactor;
if (FPosn^ = '(') or (FPosn^ = '[') or (FPosn^ = '.') or
((FPosn^ <> #0) and not (FPosn^ in Metacharacters)) then
rpParseTerm;
end;
function TtdRegexParser.Parse(var aErrorPos : integer): boolean;
begin
Result := true;
aErrorPos := 0;
{$IFDEF Delphi1}
FPosn := FRegexStrZ;
{$ELSE}
FPosn := PAnsiChar(FRegexStr);
{$ENDIF}
try
rpParseExpr;
if (FPosn^ <> #0) then begin
Result := false;
{$IFDEF Delphi1}
aErrorPos := FPosn - FRegexStrZ + 1;
{$ELSE}
aErrorPos := FPosn - PAnsiChar (FRegexStr) + 1;
{$END1F}
end;
except on E: Exception do
begin
Result := false;
{$IFDEF Delphi1}
aErrorPos := FPosn - FRegexStrZ + 1;
{$ELSE}
aErrorPos := FPosn - PAnsiChar (FRegexStr) + 1;
{$ENDIF}
end;
end;
end;
Итак, мы научились выполнять синтаксический анализ регулярного выражения. Теперь мы может принять строку и вернуть информацию о том, образует ли она допустимое регулярное выражение.
Следующий шаг состоит в создании NFA-автомата для регулярного выражения. Решение этой задачи мы начнем с создания блок-схемы конечного автомата выполнения регулярного выражения. Создание блок-схемы конечного автомата для конкретного регулярного выражения - достаточно простая задача. В общем случае правила языка утверждают, что регулярное выражение состоит из различных подвыражений (которые сами являются регулярными выражениями), скомпонованных или объединенных различными способами. Каждое подвыражение имеет единственное начальное состояние и единственное конечное состояние. И подобно тому, как это делается в конструкторе "Лего", эти простые строительные блоки собираются воедино, образуя все регулярное выражение. Блок-схема, приведенная на рис. 10.6, содержит конструкции, имеющие наибольшее значение.