Выбрать главу

Ответ. Решение для пяти и шести точек.

Давайте сделаем проблему соединения пригородов действительно сложной. Попробуем решить эту проблему, если мы не знаем расположения пригородов или даже сколько их необходимо подключить. С такой проблемой постоянно сталкивается слизевик под названием Physarum polycephalum. Слизевики не имеют мозга и состоят всего из одной клетки. Их «тело» представляет собой сеть взаимосвязанных трубок, которые качают питательные вещества назад и вперед. Слизевиков можно обнаружить на лесной подстилке или деревьях. Обычно они покрывают площадь меньше монеты, однако они могут сжиматься в неблагоприятных условиях и разрастаться, если еды вдоволь.

Когда слизевики ищут еду, они решают проблему соединения пригородов. Вдохновленный этой идеей, мой японский коллега Тоси Накагаки решил проверить, смогут ли слизевики создать сеть метрополитена и скоростного трамвая Токио. Он и его коллеги разложили питание слизевиков в виде масштабной модели Большого Токио. Они положили овсяные хлопья в чашки Петри: одна большая посередине как отображение центра города и поменьше в местах, соответствующих Сибуе, Иокогаме, аэропорту в Тибе и другим близлежащим районам. Чтобы добиться соединения чашек с овсом, слизевики должны решить ту же проблему, которую разрешили японские градостроители при проектировании транспортной системы Токио. Могут ли слизевики формировать эффективные связи между своими продовольственными ресурсами?

Эксперименты прошли отлично[14]. Создать сеть треугольников, соединяющих овсяные хлопья, не составило им труда. Тоси сравнил решение слизевиков с реальной транспортной сетью в Токио и обнаружил, что, хотя они и не были идентичными, у них была схожая структура. Решение слизевиков было так же эффективно, как и специалистов по городскому планированию; помимо этого, они использовали близкое к реальному число связей для объединения овсяных хлопьев. Сравнение решений слизевиков и людей показано на рисунке 2.3.

Рисунок 2.3. Сравнение сети, построенной слизевиками для объединения овсяных хлопьев (круги), расположенных в соответствии с пригородами Токио (слева), и реальной железнодорожной сети (справа). Воспроизводится с разрешения Американской ассоциации содействия развитию науки.

Соединения треугольников – главная особенность трубчатых сетей слизевиков. Некоторые овсяные хлопья становятся узлами, которые соединяются с другими точками, так что общая длина трубок остается небольшой.

Обратите внимание: углы в этих узловых пунктах велики, как и в футбольных схемах, и сеть распространяется равномерно во всех направлениях. Слизевики не строят наименьшую возможную сеть для объединения овсяных хлопьев: они создали несколько петель, обеспечив различные способы перемещения между одними и теми же точками. Тоси и его коллеги объяснили, что эти петли очень полезны, если структура повреждена или разрушена. Если одно звено в сети разорвано, слизевик все равно остается связанным и может передавать ресурсы по альтернативному маршруту. Это похоже на ситуацию с аварией на одном отрезке ветки метро. Если система хорошо спроектирована, то не придется отключать всю сеть из-за поломки на одной ветке.

Мозаика тики-таки

Сети слизевиков и железнодорожных служб по конструкции существенно отличаются от футбольных построений. Футбольные команды не размечают линии передач с помощью трубок или рельсов – они просто пасуют друг другу. Но есть и несколько повторяющихся сходств. Во-первых, идея покрыть треугольниками весь мир. Слизевики покрывают небольшую площадь лесной подстилки, «Барселона» заполняет поле потенциальными передачами, а хорошая железнодорожная служба связывает страну железнодорожными магистралями.

Еще одно важное сходство состоит в том, что между различными вариантами в связующих узлах лежат большие углы. Если мы поворачиваем на 360° вокруг центральных точек сети слизевиков или железных дорог, мы обнаруживаем, что во всех направлениях есть равномерно расположенные варианты – как мы видели в «Барселоне».

Рисунок 2.4. Сеть и зоны «Барселоны» в сезоне-2010/11. Сеть расположения (сплошные линии) вместе с зонами (пунктирные линии) для каждого игрока (слева); типичная позиция для каждого игрока в течение сезона (справа).

вернуться

14

Tero, A. Rules for biologically inspired adaptive network design. – Science 327(5964), 2010. – p. 439–442.