В верхней части рисунка 2.5 показан пример из матча Лиги чемпионов между «Барселоной» и чемпионом Греции «Панатинаикосом» в 2010 году. Мяч у Месси, который движется в сторону ворот; двое игроков «Панатинаикоса» выдвигаются на него. Треугольники передач показывают варианты. Хави находится прямо перед Месси, Иньеста – слева от него. Мы уже видим, что они заняли хорошие позиции, потому что могут получить прямую передачу. Но, посмотрев на зоны игроков в нижней части рисунка 2.5, мы начинаем видеть, насколько хороши эти позиции.
Рисунок 2.5. Позиции «Барселоны» за пределами штрафной площади «Панатинаикоса» за пять секунд до гола Месси. «Барселона» атакует снизу вверх. Их позиции отмечены серыми кругами, позиции игроков «Панатинаикоса» – незаштрихованные круги. Стрелки показывают, что два защитника бегут к Месси. Треугольники передач обозначены прямыми линиями между игроками (верхняя часть); зоны игроков обозначены пунктирными линиями (нижняя часть).
Оба защитника между Хави и Месси стоят на «ничейной» линии. Они устремляются к Месси, но уже слишком поздно – он легко отдает передачу между ними. Хави делает передачу в ответ, и вот спустя две секунды мяч снова у Месси. Сама по себе такая «стеночка» – элемент из школьного футбола. Но такая перепасовка стала возможной благодаря тому, что Хави, Иньеста и Месси врываются в зоны. Оппоненты остались стоять у границ этих зон. Они не могут решить, стоит ли им идти в отбор и пытаться накрыть принимающего.
Рисунок 2.6. Позиции игроков «Барселоны» за пределами штрафной площади «Панатинаикоса» за три секунды до гола Месси. Для объяснения символов см. рисунок 2.5.
Все происходит менее чем за две секунды. Когда мяч снова оказывается у Месси, расположение игроков уже выглядит так, как показано на рисунке 2.6. Два защитника бросаются на Месси, но уже слишком поздно. Педро, которого в момент паса Месси на Хави опекал защитник на углу штрафной, поднимается выше, создавая новую зону. Между игроками всего несколько метров, но Педро ушел от своего опекуна и теперь отлично располагается на срединной оси защиты соперника[17]. Один из защитников находится на линии между Месси и Педро, второй на полпути между Педро и Хави, а третий застрял на углу между всеми тремя. Педро создал максимально возможную зону в минимально возможном пространстве. Месси пасует мяч на Педро, который сбрасывает его назад, – и Месси выходит один на один с вратарем. Вся эта цепочка передач занимает всего четыре секунды; еще через секунду мяч оказывается в сетке ворот. «Барселона» – три, «Панатинаикос» – один. «Барселона» на пути к пяти забитым голам.
Гари Линекер, возможно, назвал бы это блестящим движением, в то время как Алан Хансен отметил бы небрежную защиту «Панатинаикоса». Но на самом деле все, что произошло, – это основы геометрии. Греки изобрели математическое исследование формы и положения; футболисты «Барселоны» применили его на практике. Они освоили искусство создания пространства на краю штрафной площади. Большинство голов возникают не в результате гениальных действий или невнимательности обороны. Они являются результатом тщательного планирования того, как команда должна играть. Что бы мой отец ни думал, если в футбол играют правильно, голы становятся результатом конструкций, которые игроки создают вместе. Когда мы замедляем игру и смотрим на закономерности, мы можем понять, почему некоторые команды делают это настолько хорошо.
Правила движения
«Барселона» безусловно преподала грекам урок геометрии в 2010 году, но неужели игроки производят расчеты? Неужели Пеп Гвардиола сидел перед матчем с командой и проходил алгоритмы триангуляции и тесселяции? Насколько бы гениален ни был Гвардиола, я сомневаюсь, что он говорил Хави, Иньесте, Педро и Месси создавать триангуляцию Делоне, чтобы соперник лежал на краях двойной диаграммы Вороного. Все четверо окончили футбольную академию «Барселоны», которая называется «Ла Масия». Академия всемирно известна своим футбольным образованием, но не включает в себя бакалавриат в области вычислительной геометрии. Тем не менее именно такие формы и структуры создает команда. «Барселона» использует продвинутую геометрию.
Чтобы использовать геометрию, не обязательно ее понимать. Стаи рыб также «используют» широкий диапазон геометрических форм. При путешествиях на большие расстояния косяк кефали принимает продолговатую форму, располагаясь более плотно спереди. Сардины, когда на них нападают, образуют вращающиеся шары, которые вытягиваются прочь от пасти голодных парусников и других хищников. Но создание эффективных и красивых коллективных узоров не означает, что рыба поняла математическое устройство этих фигур. Маловероятно, что они хотя бы поняли, какую форму они создают в любой конкретный момент времени. Рыба в середине вращающегося косяка просто видит уйму рыбы, которая плывет вперед. Она не может сказать, насколько велик косяк, в котором она находится; она даже не узнает, что они двигаются по кругу.