Выбрать главу

Бойяи был единственным, кто смог понять мои метафизические критерии математики.

Карл Фридрих Гаусс о своем друге Вольфганге Бойяи

В течение трех лет в Гёттингене Гаусс совершенно самостоятельно формировал свою образовательную программу. В конце 1798 года он по неясным причинам покинул университет, но к этому времени уже успел разработать наиболее важные математические идеи, которые будут публиковаться в течение следующих 25 лет. Гаусс оставил Гёттинген, не получив диплома. Из его переписки с Бойяи мы знаем, что по просьбе герцога Брауншвейгского ученый в 1799 году послал свою докторскую диссертацию в Хельмштедтский университет. Степень была предоставлена ему заочно, без обычного устного экзамена.

ФАРКАШ БОЙЯИ

Этот венгерский математик известен в Германии как Вольфганг Бойяи (1775-1856), и ему принадлежат в основном работы в области геометрии.

Главный труд Бойяи озаглавлен Tentamen iuventutem studiosam en elementa matheosos introducendi, и в нем прослеживается попытка ученого придать строгую и систематическую базу геометрии, арифметике, алгебре и анализу. В своей работе он изложил повторяющиеся процессы для решения уравнений. Проблема повторяющихся процессов в решении математических задач состоит в следующем: не всегда можно гарантировать, что число повторений будет конечным; когда метод может гарантировать это, говорят, что он сходящийся. Процедуры, описанные Бойяи, были именно такими. Другое важное значение его работы состоит в том, что она включала определение равенства двух плоских фигур, если обе они могут быть поделены на конечное число эквивалентных частей, что отражено в теореме Бойяи — Гервина. Сыном Вольфганга был Янош Бойяи, также математик, сфера интересов которого лежала в области неевклидовой геометрии. Гаусс признавал, что многими своими идеями в области геометрии он обязан именно Бойяи, с которым мог обсудить их и улучшить.

ПОСТРОЕНИЕ ПРАВИЛЬНОГО МНОГОУГОЛЬНИКА С 17 СТОРОНАМИ С ПОМОЩЬЮ ЛИНЕЙКИ И ЦИРКУЛЯ

Со времени прибытия в Гёттинген молодой Гаусс продолжил свои исследования о числах, начатые в Коллегии. Без сомнения, именно в ходе этих исследований, а не благодаря занятиям у Кестнера в Брауншвейге он сделал открытие, ставшее ключевым не только для карьеры математика, но и для будущего науки. Речь о методе построения правильного многоугольника с 17 сторонами с помощью линейки и циркуля.

НАУЧНЫЙ ДНЕВНИК ГАУССА И ЕГО ТОЛКОВАНИЕ

Благодаря построению 17-угольника в 1796 году Гаусс понял, что может извлечь больше пользы из своего таланта, занимаясь математикой, а не философией. Осознавая важность своего открытия, которое решало одну из проблем построения с помощью линейки и циркуля — проблему, очень долго волновавшую математиков, — он написал об этом в своем небольшом дневнике. Эта запись стала первой в одном из самых интересных математических документов в истории науки. Последняя запись сделана 9 июля 1814 года. Дневник Гаусса — это всего 19 страниц, на которых содержится 146 коротких записей с открытиями или результатами вычислений. Содержание записей ученого стало известно только в 1898 году, через 43 года после смерти Гаусса, когда Королевское сообщество Гёттингена попросило внука математика предоставить дневник для изучения. Так стали известны большинство результатов, полученных Гауссом, и были разрешены многие споры об авторстве математических открытий. Дневник позволял ученому быстро записывать идеи, которые у него появлялись. Гаусс записывал конечный результат, без его строгого доказательства, причем даже сама формулировка требовала определенной расшифровки. Ученый вел дневник для себя, поэтому прибегал в записи к аббревиатурам, значение которых знал только он, и не всегда использовал математические обозначения. Большинство записей удалось расшифровать, поскольку результаты, к которым они относятся, Гаусс позже опубликовал в более формальном виде (например, записи, относящиеся к треугольным числам, к методу наименьших квадратов или дифференциальной геометрии). Теорема, относящаяся к треугольным числам, имеет в дневнике следующий вид:

ΕΥΡΗΚΑ! num = Δ + Δ + Δ.

Этот результат Гаусс опубликовал позже в книге «Арифметические исследования» в 1801 году в такой формулировке: любое число может быть записано в качестве суммы, самое большее, трех треугольных чисел. Но есть настолько зашифрованные записи, что их так и не удалось понять. Гаусс записал 11 октября 1796 года: Vicimus GEGAN («Мы победили дракона»). До сих пор неясно, что за дракона он имел в виду. Ученый пишет 8 апреля 1799: REV. GALEN в прямоугольнике, и эту запись не удается связать ни с одним из известных результатов Гаусса.