Числа Ферма, названные так в честь Пьера де Ферма — первого, кто их изучал, — имеют следующий вид:
Fn = 2²n+1,
где n — натуральное число.
Ферма определил такие простые числа с намерением, очень далеким от того, чтобы решать задачи построения многоугольников с помощью линейки и циркуля (а на самом деле удалось доказать, что не все числа такого вида простые).
Гаусс показал, что для построения правильного многоугольника с n сторонами с помощью линейки и циркуля необходимо, чтобы нечетные простые множители n были различными простыми числами Ферма. То есть правильный многоугольник можно построить, если число его сторон — это степень числа 2, простое число Ферма или произведение некоторой степени числа 2 (включая единицу) и различных простых чисел Ферма. Это то, что в математике известно как достаточное условие. Итак, если многоугольник имеет форму, определенную Гауссом, его можно построить. Естественным образом возникает вопрос, является ли это также необходимым условием. То есть нужно проверить, только ли такие многоугольники можно построить с помощью линейки и циркуля.
Пьер Ванцель, французский математик, в 1837 году доказал, что условие Гаусса является необходимым, и это превратило теорему в полное описание правильных многоугольников, которые можно построить с помощью линейки и циркуля. Математики называют такие условия тогда и только тогда. То есть у нас полностью определены правильные многоугольники, которые мы можем построить с помощью линейки и циркуля. Так, треугольник (3 = 2²0 +1), квадрат (4 = 2²1 ), пятиугольник (5 = 2²1 +1) и шестиугольник (6 = 2-(2²0 +1)) можно построить с помощью линейки и циркуля, а правильный семиугольник (7 =/= 2²n + 1
Но это не означает, что нет людей, которые посвящали бы свое время и энергию безуспешному нахождению способов построения семиугольников или других фигур, что, как доказано математиками, невозможно осуществить с помощью линейки и циркуля. Это касается квадратуры круга, трисекции угла или удвоения куба. Первой задачей со страстью, которая сохранилась всю жизнь, занимался не кто иной, как Наполеон. Однако эту битву, в отличие от битв с прусской армией, Наполеон не смог, да и не мог бы выиграть.
ГЛАВА 2 «Арифметические исследования»
Гаусс — отец теории чисел в ее современном понимании. Среди других его достижений — решительный импульс в использовании комплексных чисел, благодаря чему он оставил нам инструмент, с помощью которого можно подойти к решению полиномиальных уравнений любого типа. Этой теме посвящена работа «Арифметические исследования», в которой Гаусс собрал свои многочисленные исследования, совершенные в молодые годы.
Гаусс привел математику XIX века к целям, о которых до него и не подозревали. Первым огромным вкладом ученого в алгебру была докторская диссертация, которую, как мы уже знаем, он защитил заочно в 1799 году в Хельмштедтском университете. Руководителем работы был Иоганн Фридрих Пфафф (1765-1825), один из великих математиков того времени, и он всегда относился с особым вниманием к своему подопечному. Пфафф считал своим долгом заботиться о том, чтобы его молодой друг больше двигался, и они часто гуляли днем, разговаривая о математике. Поскольку Гаусс отличался не только скромностью, но и некоторой замкнутостью, возможно, Пфафф не смог разглядеть все черты его натуры, однако известно, что сам молодой диссертант восхищался своим преподавателем, которого считал лучшим математиком Германии — благодаря не только отличным научным работам, но и простому и открытому характеру. Со временем ученик превзойдет учителя. Барон Александр фон Гумбольдт (1769-1859), знаменитый путешественник и любитель наук, с которым Гаусс сотрудничал, изучая геомагнетизм, спросил Пьера-Симона Лапласа (1749-1827), одного из выдающихся французских математиков, кого тот считает самым великим математиком в Германии. Лаплас ответил: «Пфаффа». «А Гаусс?» — удивился фон Гумбольдт, который поддерживал кандидатуру Карла Фридриха на пост директора Гёттингенской обсерватории. «О, — сказал Лаплас, — Гаусс — самый великий в мире».