Выбрать главу

Название докторской диссертации Гаусса звучит так: Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse («Новое доказательство теоремы, в которой говорится, что любая алгебраическая рациональная функция может быть разложена на множители первой или второй степени с действительными коэффициентами»). В этом заголовке содержится небольшая ошибка, которая принесла молодому Гауссу еще больше величия: это доказательство было не «новым», а первым в истории полным доказательством основной теоремы алгебры.

Математика — царица наук, а арифметика — царица математики.

Карл Фридрих Гаусс

В этой теореме, в том виде, в каком ее формулировал Гаусс (затем она была обобщена), утверждается, что любой многочлен от одной переменной имеет столько корней, сколько показывает его степень, допуская, что эти корни могут быть множественными. Многочлен Р — это выражение вида Р(x) = anxn + an-1xn-1 + ... + а1х + a0, где коэффициенты аn, аn-1, ... , a1, a0 — действительные числа. Степень Р — это наибольший показатель степени, в которую нужно возвести переменную х, то есть n. Корни многочлена — это точки, в которых он равен нулю, то есть такие точки х, в которых Р(х) = 0. В качестве естественного следствия из теоремы можно сделать вывод, что любой многочлен степени n с n корнями, необязательно разными, которые мы обозначим r1, r2,..., rn, можно разложить как произведение одночленов вида:

Р(х) = (x-r1) · (x - r2) · ... · (x - rn).

Задачи такого типа часто встречаются в повседневной жизни, и их решение заботило математиков с самого начала развития этой науки. Очевидно, что задачи типа x - 3 = 0 имеют единственный корень, то есть 3. Если мы возьмем многочлен x + 3 = 0, то для его решения нам придется учитывать отрицательные числа, поскольку решение — это -3. Именно по этой причине потребовалось расширить множество натуральных чисел до множества целых чисел, которое включает в себя и отрицательные числа. Вавилоняне и египтяне осознали, что для решения простых уравнений первой степени нужно новое расширение, в данном случае это дроби, поскольку решением уравнения 3x — 2 = 0 является величина 2/3. Множество, которое включало в себя дроби, назвали множеством рациональных чисел.

С увеличением показателя степени многочлена все усложняется, и такое простое уравнение, как х²-2 = 0, привело греков к великому открытию, поскольку решение нельзя было выразить в виде дроби. Действительно, методом от противного было найдено аналитическое доказательство того, что sqrt(2) не является рациональным числом.

ИРРАЦИОНАЛЬНОЕ ЧИСЛО sqrt(2)

Находчивые древнегреческие математики предложили доказательство нерациональности sqrt(2), пользуясь методом от противного, который состоит в том, чтобы предположить противоположное тому, что мы хотим доказать, и прийти к логическому противоречию. Предположим, что sqrt(2) рационально, то есть его можно выразить с помощью некоторой дроби p/q. Теперь предположим, что дробь невозможно сократить, то есть что р и q — взаимно простые. Иначе было бы достаточноразделить оба элемента дроби на наибольший общий делитель. Так как sqrt(2) = p/q, получается, что, если возвести в квадрат оба члена, то 2 = p²/q², значит, 2q² = p², то есть р² — это четное число, и, следовательно, таким же является р. Так как р — четное число, то существует натуральное число k, такое, что р = 2k. Если подставить новое значение р в наше уравнение, получится, что 2q² = 4k². Это предполагает, что q² = 2k², то есть q -— также четное. Но это означает, что нашу исходную дробь можно сократить, а это противоречит условиям, следовательно, предположение, что sqrt(2) — рациональное число, ложно.