На основе работ Гаусса можно было подступиться к поиску корней многочлена любой степени. Для уравнений до пятой степени (n = 5) были найдены формулы нахождения корней с помощью коэффициентов самого многочлена, что называется решением в радикалах. Формулы были того же типа, что мы использовали для решения уравнений второй степени, однако для уравнений пятой степени их никак не могли найти. Решение нашлось у очень молодого французского математика Эвариста Галуа (1811-1832), который погиб в результате дуэли, едва ему исполнился 21 год. Галуа доказал, что невозможно решить уравнения пятой степени с помощью коэффициентов самого многочлена, и нашел альтернативные методы нахождения корней, пользуясь результатами Гаусса.
Галуа представил свои математические результаты, известные как теория Галуа, в Парижскую академию наук в 1830 году, чтобы получить премию по математике. Эта работа так и не была оценена, поскольку попала в руки Огюстена Луи Коши (1789-1857); тот признал себя недостаточно компетентным для ее разбора и передал заметки Жозефу Фурье (1768— 1830), который, как секретарь академии, должен был найти нового специалиста для анализа. Смерть Фурье оставила эти поиски незавершенными, статья Галуа затерялась и так и не была опубликована. Однако за ночь до дуэли Галуа, который понимал, что его шансы выжить в поединке невысоки, и в то же время осознавал важность своих открытий, торопливым почерком написал заметки, в которых обобщалось то, что известно как теория Галуа о решении уравнений. Именно это его письменное завещание вошло в историю и позволило последующим математикам восстановить результаты молодого гения. Известно, что в том году премию академии получили Нильс Хенрик Абель (1802-1829) и Карл Густав Якоб Якоби (1804-1851), двое из самых талантливых математиков своего времени. Однако вопрос, одержали бы они победу, если бы исходная работа Галуа не потерялась, так и останется без ответа. Можно лишь утверждать, что открытия молодого Галуа в математике можно сравнить лишь с открытиями самого Гаусса.
Гаусс начал свои исследования по теории чисел во время пребывания в Коллегии Карла в 1795 году, но к работе над своим основным трудом, Disquisitiones arithmeticae («Арифметические исследования»), он приступил во время пребывания в Гёттингенском университете с 1795 по 1798 год. Мы это знаем благодаря его научному дневнику, в котором уже в 1796 году появляются два блестящих результата: разложение любого целого числа на три треугольных и построение правильного 17-угольника, о которых мы уже говорили в главе 1. Они оба включены в «Исследования», увидевшие свет в Лейпциге летом 1801 года, через три года после возвращения Гаусса в его родной город Брауншвейг. Ученый снова отложил публикацию своих результатов до тех пор, пока не смог сделать этого в формате книги.
В «Исследованиях» Гаусс придал новое направление теории чисел, которая перестала быть набором разрозненных результатов и превратилась в такую же важную математическую дисциплину, как анализ или геометрия.
Работа разделена на семь глав, или разделов. Первые три раздела вводные, разделы с IV по VI образуют центральную часть работы, а раздел VII — это маленькая монография, посвященная отдельной теме, но связанная с остальными главами.
Молодому Гауссу повезло, что он мог рассчитывать на материальную помощь герцога Брауншвейгского (сверху), который оплачивал его образование и покровительствовал ученому до своей смерти в 1806 году. Благодаря влиянию герцога Гаусс в 1791 году поступил в Коллегию Карла (внизу), где начал работу над некоторыми своими важнейшими математическими результатами, отраженными в «Арифметических исследованиях», обложка которых представлена на среднем фото.