Книга была опубликована на латыни, хотя первый вариант Гаусс написал на немецком. Издатель счел, что труд в латинском варианте получит большее распространение. Главная тема работы — определение эллиптических и гиперболических орбит планет и комет при использовании минимального числа наблюдений без дополнительных предположений. В предисловии Гаусс напоминает о вычислении орбиты Цереры, которое принесло ему такую славу. Книга носит явный дидактический характер и включает многочисленные примеры применения. Она разделена на две части: в первой содержится теоретический материал, а во второй — решения общей проблемы. Это первое строго сформулированное применение законов Кеплера для вычисления орбит небесных тел. До открытий Гаусса, таких как метод наименьших квадратов, астрономы пользовались методами, которые от случая к случаю варьировались, и не искали общего правила. Основной вклад Гаусса состоит в сочетании теоретических знаний, необыкновенной легкости алгебраических вычислений и его практического опыта в астрономии. В отличие от своих предшественников (включая Исаака Ньютона, который решал подобные проблемы с помощью геометрического приближения), Гаусс не предполагает знание формы орбиты наблюдаемого объекта. Это затрудняет вычисления, но позволяет подойти к проблеме, не зная, является ли изучаемый объект планетой, кометой или астероидом, что нелегко определить при небольшом объеме наблюдений.
Гаусс не был открывателем кривой, носящей его имя. Нормальное распределение, или кривая Гаусса, также известная как Гауссов колокол в статистике, была описана Абрахамом де Муавром (1667-1754) в статье 1733 года, за много лет до рождения героя нашей книги. Функция плотности нормального распределения (она описывает вероятность нахождения значения переменной в определенном множестве), которая естественным образом появляется при изучении поведения реальных явлений, имеет вид:
где μ и σ² — это среднее значение и дисперсия распределения. Их представление показано на следующем рисунке при μ = 0.
Имя Гаусса фигурирует в названии этого распределения по двум причинам: с одной стороны, ученый широко использовал нормальное распределение при изучении ошибок экспериментов, когда анализировал астрономические данные, а с другой стороны, существует тип функций, называемых гауссовыми (в честь Гаусса), среди которых нормальное распределение — частный случай при
В нормальном распределении большинство значений переменной группируется вокруг центрального значения, поэтому в нем график достигает наибольшей высоты. Чем больше мы отдаляемся от него, тем меньше вероятность нахождения данных, поэтому график убывает при отдалении от значения средней величины.
Четыре раздела первой части книги описывают движения тела вокруг Солнца. Раздел I содержит многие необходимые определения, такие как радиус или эксцентриситет, и тригонометрические формулы для описания положения тела в заданной точке орбиты. Также в него включены практические советы о методах экстраполяции числовых таблиц и приближения парабол к эллипсам и гиперболам. Раздел II посвящен определению положения небесного тела как функции с тремя координатами. Гаусс начал с определения семи параметров, которые определяют движение небесного тела: средняя долгота, среднее движение, наибольшая полуось, эксцентриситет, долгота восходящего узла, наклонение орбиты и масса. Затем он описал отношения между этими элементами и объяснил критерии для определения различных конических сечений. И в завершение раздела он указал дифференциальные уравнения движения небесного тела, приведя несколько практических примеров.
В разделе III ученый затронул проблему вычисления орбиты на основе нескольких наблюдений и нахождения всех параметров, описывающих движение тела, с помощью математических отношений. В последнем разделе он занялся случаем различных наблюдений, которые сделаны в той же плоскости, что и Солнце (как движение Земли, например), для которых он вывел их тригонометрические отношения. Этот короткий раздел заканчивается формулировкой уравнения для эллиптических орбит.
Принцип состоит в том, что сумма квадратов разности между наблюдаемым и вычисленными значениями должна быть минимальной.