Выбрать главу

Любой глупец может задавать вопросы о простых числах, на которые не сможет ответить и самый умный человек.

Годфри Харолд Харди (1877-1947) о простых числах

Люди пытались понять простые числа в течение поколений, и за это время были сделаны интересные наблюдения. Например, существует гипотеза, согласно которой можно найти бесконечное число простых чисел-близнецов (разделенных двумя единицами), то есть если р — простое число, таким же является р + 2. Пары простых чисел-близнецов находили среди очень больших чисел, таких как пара 1000 037 и 1000 039. Евклид более двух тысяч лет назад доказал, что существует бесконечное количество простых чисел, но никто не знает, есть ли число, после которого больше нет пар соседних простых чисел. В математике одно дело — гипотезы, и совсем другое — теоремы, отделенные от гипотез пропастью доказательства. Именно поэтому математическое доказательство — фундаментальная основа прогресса этой науки.

Одним из первых вопросов, которым занялись математики, было нахождение формул, дававших бы бесконечный ряд простых чисел. Ферма думал, что нашел одну из таких формул: его идея состояла в том, чтобы прибавлять 1 к особому типу степеней числа 2. Согласно Ферма, числа вида 2²n +1 (где n — натуральное число), которые мы обозначим Fn и будем называть простыми числами Ферма или просто числами Ферма, всегда простые. Для малых степеней она работает: при n = 1 получаем 5, при n = 2 получаем 17. Ферма был убежден, что его формула всегда даст простое число, но у него не было возможностей проверить свою догадку экспериментально, поскольку числа быстро росли, и вычисления становились невозможными. Однако в этот раз интуиция его подвела. Пятое простое число Ферма, состоящее из десяти цифр, которое он не смог вычислить, уже не простое, поскольку делится на 641, как доказал Эйлер. После вычисления этого контрпримера интуитивное предположение Ферма перестало быть гипотезой и оказалось просто ложным предположением. Именно поэтому некоторые авторы избегают называть такие числа простыми числами Ферма и говорят о них просто как о числах Ферма.

Гаусс с большим уважением относился к числам Ферма, но нашел им другое применение. В «Арифметических исследованиях» он доказал, что если число Ферма простое, можно построить правильный многоугольник с этим числом сторон с помощью линейки и циркуля. Число сторон многоугольника, построение которого сделало молодого Гаусса известным, — 17, и 17 же — второе число Ферма. Четвертое число Ферма, 65537, простое, и это означает, что можно построить идеальный правильный многоугольник с таким числом сторон. Очевидно, для достижения этого результата необходимы большая точность и терпение, так, мы уже знаем, что мастер, которому заказали выгравировать 17-угольник на могильной плите Гаусса, отказался делать это.

Итак, хотя Гаусс и нашел применение для формулы простых чисел Ферма, сама эта формула оказалась неэффективной для своей изначальной цели. Это еще один пример того, что математические теории, которые считаются неперспективными, могут найти свое применение в будущем. Именно поэтому математики практически не говорят о малой применимости своих открытий, в какой бы теоретической области они ни работали.

Ферма попытался определить некоторые из свойств таких простых чисел, как 5, 13, 17 или 29, которые при делении на 4 дают в остатке 1. Такие числа могут быть записаны в виде суммы квадратов (13 = З² + 2², 29 = 2² + 5² и так далее). Ферма предположил, что сумма квадратов дает простые числа, и даже утверждал, что у него есть доказательство. На самом деле Ферма слишком часто строил гипотезы и переоценивал свою способность доказать их. Собственно, многие математики той эпохи не представляли доказательств свойств, которые они, по их словам, открыли.

В Рождество 1640 года Ферма рассказал об этом своем открытии в письме, которое послал монаху и музыканту Марену Мерсенну (1588-1648). Этот человек был обычным собеседником многих ученых своего времени, он переписывался почти со всеми французскими математиками и даже с некоторыми иностранными, такими как Галилео Галилей (1564-1642). Группа математиков, которые объединились через переписку с Мерсенном, стала ядром Парижской академии наук.