2. Я её люблю. Первую работу по проблеме Кондо написал в 1981 г., с тех пор регулярно ею занимался и занимаюсь (наряду с другими делами). Самая недавняя моя статья по проблеме Кондо появилась в научном журнале (Physical Review B, prb. aps.org. — ТрВ) в марте 2010 г.
Предпосылки для дальнейшего
Популяризация с нуля — дело неблагодарное и трудное, так как, стараясь быть максимально понятным широчайшим трудящимся массам, неизбежно рискуешь вогнать в скуку коллег (в широком смысле слова). Это попытка популяризации на промежуточном уровне, рассчитанная на тех, кто знаком с самыми общими основами квантовой механики, но никогда не слышал о проблеме Кондо как таковой. Я считаю известным, что:
1. Состояние многоэлектронной системы описывается антисимметричной волновой функцией, которая в случае невзаимодействующих электронов может быть представлена как слэтеровский детерминант, построенный из одноэлектронных функций соответствующей задачи.
2. Проекция спина (внутреннего углового момента) электрона на произвольное направление может принимать только два значения — вверх или вниз.
3. Электроны в металле описываются состояниями, соответствующими более-менее свободному движению. Состояния с наинизшей энергией заняты, причем в каждом состоянии с заданным импульсом может находиться не более двух электронов, отличающихся проекцией спина. Энергия последнего занятого состояния (или первого свободного, для металла это одно и то же, так как спектр непрерывный) называется энергией Ферми.
4. В идеальной кристаллической решетке при температуре, равной нулю, электроны в металле движутся без всякого сопротивления. Последнее определяется рассеянием электронов на дефектах (скажем, примесях — атом золота, замещающий атом меди, и т.п.) и на тепловых колебаниях атомов — фононах. С ростом температуры сопротивление металла, в норме, растет, так как растет амплитуда атомных колебаний, на которых рассеиваются электроны.
На самом деле (и это было известно экспериментально с начала ХХ в.) сопротивление некоторых (даже большинства) металлов при достаточно низких температурах обращается в ноль. Это явление сверхпроводимости, куда более известное, чем «эффект Кондо», но, с теоретической точки зрения, пожалуй, более простое.
В экспериментах, выполненных в 1930-х годах, обнаружилось, что сопротивление благородных металлов (медь, золото, серебро — они не сверхпроводящие) при сильном понижении температуры не исчезает, как при сверхпроводимости, и даже не уменьшается, как предписывали стандартные теории (меньше фоно-нов — меньше источников рассеяния), а, наоборот, растет. По этому поводу выдвигались самые фантастические идеи, вплоть до утверждения о некоем непонятном законе природы, в силу которого, если сопротивление при нулевой температуре не обращается в ноль (сверхпроводимость), оно должно обращаться в бесконечность. Все это оказалось ерундой. Выяснилось, что сопротивление всегда растет на небольшую величину. Более того, было показано, что эффект зависит от чистоты образца и, скорее всего, не является внутренним свойством металлов, а зависит — от примесей. Тут надо сказать, что большинство теоретиков (не говорю о белоручках из фундаментальной физики, говорю о скромных рабочих лошадках из конденсированного состояния) на дух не переносят «грязи» и дефектов и, если явление связано с ними, теряют к нему всякий интерес.
В 1964 г. японский теоретик Юн Кондо рассмотрел задачу о рассеянии электронов в металле на магнитной примеси, т.е. на примеси с нескомпенсированным спином и магнитным моментом (например, железо, кобальт или марганец в золоте, серебре или меди). Взаимодействие электронного спина со спином примеси он считал малым (такое взаимодействие — оно называется s-d обменным — было введено в науку в 1946 г. моим учителем Сергеем Вонсовским). Кондо поэтому использовал, как обычно, теорию возмущений (в квантовой механике она называется борновским приближением).
Было уже известно, что в ведущем порядке (втором, так как первый зануляется) ничего интересного не происходит — обычная добавка к постоянному (не зависящему от температуры) электросопротивлению, как для простых, немагнитных примесей. Кондо рассмотрел следующий, третий порядок и обнаружил, что соответствующая поправка логарифмически зависит от температуры, а при температуре, стремящейся к нулю, формально стремится к бесконечности, что означает неприменимость теории возмущений. Температура, при которой это случается (поправка сравнивается с ведущим членом разложения), получила название температуры Кондо.