Первый — так называемый нисходящий подход, который больше привязан к математике и к семиотике (науке о знаках) и пытается анализировать и копировать высокоуровневые психические процессы: мышление, речь, творческий выбор, распознавание образов. В рамках этого подхода на протяжении второй половины ХХ и начала XXI века был наработан уникальный математический и логический аппарат, который позволил разложить все сложные процессы человеческого интеллекта на составные "кирпичики". Надо сказать, что побочным результатом этого нисходящего подхода явилось гораздо более полное осознание процессов творчества (например, ТРИЗ), этот подход привёл к массе открытий в области психологии, социологии, медицины, общественных коммуникаций. Люди гораздо полнее стали понимать самих себя, свои действия и мотивации. Более того, в рамках этого подхода стало ясно, что то, что мы называем "человеческим поведением", часто бывает неразумным и нелогичным, диктуется, условно говоря, спящим внутри нас "внутренним крокодилом" — моделями и шаблонами поведения, которые были унаследованы нами от наших далёких предков. С другой стороны, стал очевидным и иной тезис: многие разумные действия, которые можно мотивировать с точки зрения логики и интеллекта, выходят за рамки человеческой нравственности и морали, и это тоже приводит к тому самому феномену "искусственного умения рассуждать разумно", которое по своей сути не привязано к биологической природе человека.
Второй подход — это противоположный, восходящий подход. Со времени открытия нейронов и биологической нейронной сети в конце XIX века человечество прошло долгий путь понимания внутренней сути этих "песчинок разума". Так, весомые доказательства существования активных соединений, синапсов, между отростками нейронов были получены только полвека спустя, в 1950-х годах, с изобретением электронного микроскопа. С тех пор изучение нейронов продвинулось вперёд несоизмеримо — можно сказать, что за последнее десятилетие мы узнали о нейронах больше, чем за прошедшие полвека, а ещё сто лет назад о своём мозге мы не знали ничего. Но тут надо учитывать и второй процесс — ровно такие же изменения произошли и с искусственными заменителями нейронов, микропроцессорами. Сегодняшний их уровень позволяет практически полностью скопировать все функции человеческого нейрона, создав с помощью микропроцессоров ту самую рукотворную нейронную сеть, которая сможет полностью воспроизвести действия человеческих нейронов. При этом нынешний уровень развития микропроцессорной техники позволяет делать это достаточно просто: для создания аналога единичного человеческого нейрона можно использовать уже не самые высокопроизводительные процессоры, хватает и достаточно простых "камней". А вот по количеству отдельных микропроцессоров-нейронов искусственные нейросети пока что сильно отстают от человеческого разума: у нас в мозгу содержится около 65 миллиардов нейронов, а современные компьютерные нейросети оперируют гораздо меньшим числом элементов. С другой стороны, тут на помощь приходит первый, нисходящий подход: как оказалось, наши собственные структуры мозга часто чрезвычайно избыточны. В силу чего, например, сегодня достаточно сложная функция распознавания лиц может быть реализована в рамках очень скромной нейросети, которая доступна даже для недорогих любительских фотокамер — математика помогла в этом случае построить эффективную и простую нейросеть, которая заменяет сложные структуры человеческого мозга.
"ЗАВТРА". Да, способности современных фотоаппаратов, видеокамер и в особенности различных социальных сетей распознавать образы на снимках поражают воображение. Иногда я уже не помню, как зовут человека на фотографии, а какой-нибудь "Фейсбук" уже нашёл его на моих прошлых фотографиях и предлагает его отметить!
Антон БАЛАКИРЕВ. Это и есть зримое отражение прогресса, который прошли нейросети в процессе совершенствования. Возьмём для примера две технологии, где применение ИИ уже дало неоспоримые результаты и ещё большие может принести в ближайшем будущем. Это уже упомянутое распознавание образов и распознавание человеческой речи. В тот момент, когда гиганты ИТ-индустрии занялись вопросом распознавания речи, тогдашние нейросети уже могли распознавать около 95% стандартной человеческой речи. Казалось бы, этого уже вполне хватает для речевого общения человека и компьютера, для управления голосом действиями машин и механизмов. Кстати, обычное общение людей и наш уровень распознавания чужой речи находится где-то на похожем уровне. Однако в отличие от компьютеров, которые понимают любую фразу буквально, люди всё-таки используют контекст сказанного, "достраивая" в уме фразу, обращённую к ним и привязывая её к ситуации. А вот машинные системы это делать тогда не умели (да и не могут сегодня), в силу чего их 5% ошибок распознавания речи выглядели печально для собеседника — складывалось впечатление, что система речи "тупит" и ведёт себя "дебильнее некуда". Однако за последние несколько лет системы распознавания речи научили синтаскису, ввели в них понятие контекста, да и просто подтянули уровень распознавания слов — в итоге получилось, что нынешняя стандартная нейросеть, которой оборудован уже практически любой смартфон, может распознавать до 99% стандартной устной речи. А это уже открывает совсем другие перспективы общения человека и компьютера — реальностью становится отдача приказов голосом, а клавиатуры или сенсорные экраны становятся лишь вспомогательными способами общения с компьютерами и другими "умными" устройствами.