Выбрать главу

Такой же прогресс наблюдается и в технологии распознавания образов. Ещё около пяти лет назад, когда на рынок вышли первые системы поиска по изображениям, они давали достаточно серьёзный процент ошибок — 13-15%. На сегодняшний день эти системы радикально улучшились: современная нейросеть анализа изображений устойчиво работает с 3-4% ошибок. Для сравнения: человек в аналогичных задачах может ошибаться в 5% случаев.

"ЗАВТРА". А что повлияло на столь впечатляющий прогресс нейросетей? Только ли учёные и их открытия всему виной — или же были другие слагаемые такого рода революционных изменений?

Антон БАЛАКИРЕВ. Конечно, дело не только в прогрессе и в научном поиске.

Во-первых, надо сказать, что составляющей успеха нейросетей было то, что в эту тематику были сделаны в 2000-х годах громадные вложения финансов, инициированные как государственными ведомствами, так и частным бизнесом — в первую очередь, в США. Специфика государственного интереса к нейросетям достаточно понятна, но она часто проходит по категории "секретно" или "совершенно секретно", поэтому тут мы можем лишь предполагать, что ищут государственные нейросети в интернете по ключевым словам и образам, а вот мотивация крупного бизнеса лежит буквально на поверхности. Нейросети позволяют максимально эффективно работать с так называемыми массивами big data ("всеобщие" или "большие" данные), которые возникли благодаря интернету, социальным сетям, современной цифровой фото и видеотехнике, системам автоматического наблюдения и прочим техническим инновациям. Сегодня человечество продуцирует всё более возрастающий объём различной информации — и уже только с помощью мощной нейросети можно его как-то охватить и выстроить поиск в нём, обеспечить извлечение какой-то упорядоченной информации из него — будь то данные о конкретном человеке или предпочтения определённой социальной группы. А для любой крупной корпорации знание о своих возможных или существующих покупателях и клиентах — это громадная сила. Ведь, как пример, за "Фейсбуком" не стоит ничего материального, основная его ценность — это именно знание о подписчике, его социальных связях и предпочтениях. Ту же информацию продают своим партнёрам и "Гугл", и "Яндекс" — каждая из таких компаний выстраивает персональные профили для каждого из своих пользователей, а потом использует данные нейросети, например, для показа рекламы, максимально подходящей именно этому человеку. Впрочем, уже давным-давно известно: ровно в тот момент, когда вы нажали галочку "Я согласен" в окошке вашего браузера, — вы попали в "матрицу" и предоставили все данные о себе в чужие руки.

Вторым феноменом, который обеспечил бурное развитие нейросетей, были сами "большие данные". Всё дело в том, что любой нейросети для обучения нужна "пища для ума" — возможность постоянно анализировать большой поток входящих данных, в работе с которым и определяются, и шлифуются правила принятия решений. Условно говоря, вновь созданная искусственная нейросеть пуста, как разум новорождённого ребёнка: она не имеет никаких правил принятия решений или работы с возможными ошибками. После этого экспериментатор задаёт нейросети правила поиска и отсева, создавая набор ограничений вида "что такое хорошо и что такое плохо". А нейросеть после этого идёт в мир "больших данных" и начинает там самообучаться, иногда получая корректирующие наставления от своих создателей. Поэтому сегодня весь входящий поток информации интернета анализируется различными нейросетями не раз и не два — каждая из них обучается чему-то важному для себя на каждой нашей записи, фотографии, видеоклипе. И этот процесс идёт с ускорением.