Вот такое удивительное и вряд ли случайное совпадение встреч, интересов, увлеченностей и направлений. Как будто что-то вызревало и прорвалось.
Итак, для меня лично 1977–1979 годы — момент крутой бифуркации. Ветвление и выбор нового направления «математическое моделирование и вычислительные исследования сложных неравновесных систем».
3.4. Бифуркации и другие полезные понятия
Интересно посмотреть на события турбулентных 90-х годов новой России с позиции неравновесной газотермодинамики, бифуркаций и самоорганизации в неравновесных системах.
Приведем несколько базовых и удивительных характерных терминов неравновесной термогазодинамики и теории Хаоса, которыми произвольно или в качестве речевых оборотов часто пользуются люди как в повседневной жизни, так и при кризисных событиях.
Бифуркация — раздвоение. В теории динамических систем — качественная перестройка системы. В синергетике — это точки неустойчивого равновесия, точки «выбора» дальнейшего развития системы. Предтеча некоего фазового перехода.
Принципы бифуркации удивительно разнообразны: от точки выбора «куда пойти учиться» после школы до выбора принципиально другой системы жизни.
Распад СССР, пожалуй, самая значимая точка бифуркации глобальной неравновесной турбулентной системы мира. В синергетике и теории Хаоса точка бифуркации представлена как критическое состояние системы, при котором система становится неустойчивой относительно флуктуаций. Возникает неопределенность: станет ли состояние хаотичным или система перейдет на новый, более дифференцированный и высокий уровень упорядоченности.
Флуктуации. В точке бифуркации большое значение имеют флуктуации, когда их случайное «вторжение» в неравновесную систему может резко нарушить баланс метастабильности.
В неравновесной газодинамике роль флуктуации проявляется наиболее ярко в процессах спонтанной конденсации перенасыщенности пара. [14]
Теория флуктуации (Д. Гиббс), их экспоненциального роста, расчета скорости образования центров конденсации, разработанные Френкелем и Зельдовичем, активно использованы в работах автора.
Диссипативные структуры.
Одно из основных понятий теории самоорганизации. Диссипативная структура — это открытая динамическая система, оперирующая вдали от термодинамического равновесия и связанная с рассеянием (диссипацией) энергии, вещества или информации.
По И. Пригожину — «динамические системы образуются как энергетически более экономные, выгодные образования в сильно неравновесных системах, условиях. При этом производство энтропии (неупорядоченности) и диссипация (рассеяние) энергии — минимальное.
Образование новых типов структур указывается на переход от хаоса и беспорядка к организации и порядку. Эти диссипативные динамические микроструктуры являются прообразами будущих состояний системы, так называемых фракталов.
3.5. Фракталы и аттракторы
И опять — математическое моделирование.
Фрактал — математическое множество, обладающее свойством самоподобия. Фрактальное моделирование, на основе развития компьютерных технологий — ключ к эффективной визуализации этих структур, их исследования, анализа и использования. Классический образец визуализированного фрактала — Множество Мандельброта (Рис. 3–1).
Примеров визуализации самых разнообразных фрактальных форм — великое множество. См., например, фрактал «Кочан капусты сорта Романенко» (Рис. 3–2), фрактал «Вязаные кружева» (Рис. 3–3) и др.
Рис. 3–1. Множество Мандельброта.12
Рис. 3–2. «Кочан капусты сорта Романеско».13
Рис. 3–3. Вязаные кружева.14
Фрактальные структуры отмечаются во многих областях реального мира. Ветви дерева, структура легких, графики данных о продаже акций, облака, снежинки, система кровообращения (Рис. 3–4) — все они обладают самопохожестью.
Рис. 3–4. Лист дерева.15
12
https://math.stackexchange.com/questions/323334/what-was-the-first-bit-of-mathematics-that-made-you-realize-that-math-is-beautif/323676