Но как может рибосома произвести цепочку аминокислот, считывая цепочку нуклеотидов? Эта загадка была разрешена в начале 1960-х годов в результате работы большой группы ученых. Оказалось, что в основе этого процесса лежит генетический код — отображение с троек нуклеотидов на аминокислоты (см. рис. 94). Это очень напоминает типогенетический код, но здесь последовательность из трех оснований (или нуклеотидов) составляет кодон, в то время как в типогенетике мы использовали только пару оснований. Таким образом, в таблице должно быть 4×4×4=64 разных записей, вместо шестнадцати. Рибосома считывает одновременно только три нуклеотида мРНК — то есть, один кодон. Каждый раз, когда это происходит, к белку, который в данный момент вырабатывается, прибавляется одна аминокислота. Таким образом, белок изготовляется постепенно, кислота за кислотой.
Типичная последовательность мРНК, прочитанная сначала как два триплета (наверху) и затем как три дуплета (внизу); пример гемиолы в биохимии:
CUA GAU
Сu Ag Аu
Рис. 94. Генетический код, по которому каждый триплет в цепочке мессенджера РНК соответствует одной из двадцати аминокислот (или знаку препинания).
Когда из рибосомы возникает белок, он не только становится все длиннее, но также укладывается в пространстве, на манер змеи, которая растет и укладывается в кольца. Эта укладка называется третичной структурой белка (рис. 95), в то время как сама последовательность аминокислот является его первичной структурой. Третичная структура следует из первичной структуры, точно так же, как это было в типогенетике. Однако рецепт для получения третичной структуры из первичной структуры здесь намного сложнее. В действительности это одна из задач современной молекулярной биологии: найти некие правила, при помощи которых можно было бы предсказать третичную структуру белка, исходя только из его первичной структуры.
Рис. 95. Структура миоглобина, выведенная на основе рентгеновского снимка высокой разрешающей способности. Образование, напоминающее изогнутую трубу, — это его третичная структура, меньшая спираль внутри «трубы» — «спираль альфа» — вторичная структура. (A. Lehninger, «Biochemistry»)
Другое, возможно, самое серьезное различие между типогенетикой и настоящей генетикой заключается в том, что в типогенетике каждая аминокислота типоэнзима отвечает за некое определенное «действие», в то время как отдельные аминокислоты настоящих энзимов не имеют четко определенных ролей.
Третичная структура, взятая целиком, определяет, как будет функционировать энзим. Нельзя сказать: «Присутствие этой аминокислоты означает, что совершится некая определенная операция». Иными словами, в настоящей генетике вклад каждой отдельной аминокислоты в работу всего энзима не свободен от «контекста». Однако этот факт не следует рассматривать как аргумент против редукционизма и как доказательство того, что «целое [энзим] не может быть объяснено как сумма его частей». Такой подход был бы совершенно не оправдан. Напротив, вполне оправдан отказ от упрощающего утверждения, что «вклад в общую сумму каждой аминокислоты не зависит от остальных присутствующих в энзиме аминокислот». Другими словами, функция белка не может быть составлена из независимых функций составляющих его частей, мы должны принимать во внимание их взаимодействие. В принципе возможно написать такую компьютерную программу, которая по данной первичной структуре белка определяла бы сначала его третичную структуру и затем — функцию энзима.
Это было бы редукционистским объяснением работы белков, но определение «суммы» требовало бы в таком случае весьма сложного алгоритма. Выяснение функции энзима исходя из его первичной а затем третичной структуры — это одна из задач современной молекулярной биологии.
Может быть, функция энзима все-таки может быть объяснена, исходя из независимых функций отдельных частей но в таком случае эти части были бы элементарными частицами, такими как электроны и протоны, а не блоками, такими как аминокислоты. Это — пример редукционистской дилеммы: чтобы объяснить события в терминах сумм независимых частей, приходится спускаться на уровень физики; но тогда число частиц оказывается таким огромным, что подобное объяснение становится невозможно осуществить на практике. Оно переходит в область чисто теоретических выкладок, в область «в принципе» возможного. Таким образом, нам приходится удовлетвориться суммой частей, зависящей от контекста. В этом есть два недостатка. Первый заключается в том, что составляющими частями здесь являются гораздо более крупные единицы, поведение которых можно описать лишь на более высоких уровнях — а следовательно, неточно. Второй недостаток в том, что слово «сумма» связано с идеей о том. что каждой части соответствует простая функция, и что функция целого — всего лишь сумма составляющих его независимых функций. Такой подход не дает результата, когда мы пытаемся объяснить функцию энзима, рассматривая аминокислоты как составляющие его единицы. Но как бы то ни было, это общее явление, возникающее при анализе сложных систем. Чтобы интуитивно понять, как действуют такие системы, и иметь возможность с ними работать, нам приходится жертвовать точностью микроскопической, независимой от контекста картины. Но тем не менее, мы не отказываемся от мысли, что в принципе такая картина возможна.
Вернемся к рибосомам, РНК и белкам. Мы сказали, что рибосомы «строят» белок, пользуясь схемой, принесенной из «тронного зала» мессенджером ДНК — РНК. Означает ли это, что рибосома может переводить с языка кодонов на язык аминокислот, то есть что рибосома «знает» Генетический Код? Однако такого количества информации в рибосоме просто нет. Так как же она это делает? Где именно хранится Генетический Код? Интересно то, что он хранится в самой ДНК (где же еще!). Это необходимо пояснить.
Для начала давайте дадим частичное объяснение. В цитоплазме плавают молекулы, имеющие форму четырехлистного клевера; аминокислота свободно присоединена (водородной связью) к одному из листочков. На противоположном листке находится триплет нуклеотидов — так называемый антикодон. Два других листка для нас в данный момент не важны. Эти «клеверные листки» используются рибосомами для производства белков следующим образом. Когда новый кодон мРНК проходит через «проигрывающую головку» рибосомы, рибосома выходит в цитоплазму и присоединяется к клеверу, чей антикодон является дополнением к кодону мРНК. Он поворачивает клевер так, чтобы иметь возможность оторвать от него аминокислоту, которая затем присоединяется ковалентно к растущему белку. (Связь между аминокислотой и ее соседом в белке очень сильна; она называется пептидной связью. Поэтому белки иногда называют также «полипептидами».) Разумеется, что у «клеверных листков» не случайно оказались нужные аминокислоты — ведь они были изготовлены согласно точным инструкциям, поступившим из «тронного зала».
Настоящее название такого «клевера» — трансплантация РНК. Молекула тРНК невелика —- размером с маленький белок. Ее составляет цепь примерно из восьмидесяти нуклеотидов. Как и в случае мРНК, молекулы тРНК строятся путем транскрипции большого клеточного эталона, ДНК. Однако, по сравнению с огромными молекулами мРНК, которые могут быть составлены из тысяч и тысяч нуклеотидов, расположенных цепочками, тРНК — крохотные молекулы. Кроме того, тРНК похожи на белки (и очень отличаются от цепочек мРНК) следующим: их жесткая третичная структура определена их первичной структурой. Третичная структура молекулы тРНК позволяет присоединиться к месту аминокислот только одной кислоте — той, которая продиктована, согласно Генетическому Коду, антикодоном на противоположной стороне. Функцию тРНК можно пояснить на примере следующей забавной аналогии. Представьте себе синхронного переводчика, вокруг которого валяется множество карточек со словами. Из этой кучи он выхватывает — всегда безошибочно! — нужную карточку каждый раз, когда ему надо перевести какое-то слово. В этом случае переводчиком является рибосома, карточками — кодоны, а их переводами — аминокислоты.