Вы можете возразить, что использование мета-описаний в данном случае напоминает стрельбу по мухам из пушки, поскольку тройничность и четверичность могли быть найдены уже на первом уровне, если бы мы построили наше описание немного иначе. Это верно, но для нас важно иметь возможность решать эти задачи различными путями. Программа должна быть очень гибкой; она не должна быть обречена на провал, если ее «занесет» не туда. Я хотел проиллюстрировать общий принцип: когда построение эталона затруднено, потому что препроцессор запутывается среди различных деталей, это показывает, что здесь задействованы понятия на высших уровнях, о которых препроцессор ничего не знает.
Теперь давайте рассмотрим другой вопрос: каким образом можно отбрасывать информацию. Ответ на этот вопрос включает два родственных понятия, которые я называю «фокусированием» и «фильтрованием». Фокусирование означает составление описания так, что оно сосредотачивается на каком-то одном районе картинки и «сознательно» оставляет без внимания все остальные. Фильтрование означает составление описания так, что оно видит содержимое картинки под каким-то определенным углом, и сознательно игнорирует все другие аспекты.
Таким образом, они дополняют друг друга: фокусирование имеет дело с объектами (грубо говоря, с существительными), а фильтрование — с понятиями (грубо говоря, с прилагательными).
Рис. 126. Задача Бонгарда #55 (Из книги Бонгарда «Проблема узнавания»).
Для примера фокусирования рассмотрим ЗБ #55 (рис. 126). Здесь мы сосредотачиваемся на выемке и маленьком круге около нее, и оставляем без внимания все остальное. ЗБ #22 — это пример фильтрования. Мы отбрасываем все понятия, кроме размера. Для решения ЗБ #58 (рис. 128) требуется комбинация фокусирования и фильтрования.
Одним из важных способов получения идей для фокусирования и фильтрования является другой тип «фокусирования»: детальный анализ какой-либо особенно простой рамки — скажем, рамки с наименьшим количеством предметов. Очень полезным может оказаться сравнение между гобой простейших рамок обоих классов.
Но каким образом программа определяет, какие рамки самые простые, до того, как она производит их описание? Одним из способов определения простоты является поиск рамки с наименьшим количеством черт, найденных препроцессором. Это может быть сделано на ранних стадиях работы, поскольку для этого не нужен готовый эталон; на самом деле, это может быть использовано как поиск черт для включения в эталон. ЗБ #61 (рис. 129) — пример случая, когда такая техника дает плоды очень быстро.
Рис. 127. Задача Бонгарда #22 (Из книги Бонгарда «Проблема узнавания»).
Рис. 128. Задача Бонгарда #58. (Из книги Бонгарда «Проблема узнавания»).
Рис. 129. Задача Бонгарда #61. (Из книги Бонгарда «Проблема узнавания»).
Задачи Бонгарда можно интерпретировать как крохотную модель мира, занимающегося «наукой» — то есть поисками упорядоченных структур. В процессе этих поисков создаются и переделываются эталоны, гнезда переносятся с одного уровня обобщения на другой, используются фокусирование и фильтрование и т. д.
На каждом уровне сложности делаются свои открытия. Теория американского философа Куна о том, что странные события, которые он называет сдвигами парадигмы, отмечают границу между «нормальной» наукой и «концептуальными революциями», не кажется подходящей к нашему случаю, поскольку в данной системе сдвиги парадигмы происходят все время и на всех уровнях. Это объясняется гибкостью описаний.
Разумеется, некоторые открытия более «революционны», чем другие, поскольку они производят больший эффект. Например, мы можем обнаружить, что задачи #70 и #72 представляют из себя «одну и ту же задачу», рассмотренную на достаточно абстрактном уровне. Основная идея здесь в том, что в обеих задачах используется понятие «вложения» на глубине 1 и 2. Это новый уровень открытия в задачах Бонгарда. Существует еще более высокий уровень, касающийся всех картинок как целого. Если кто-либо не видел этого собрания, интересной задачей для него было бы попытаться представить себе, как эти картинки выглядят. Это было бы революционным открытием, хотя механизмы, которые при этом оперируют, не отличаются от механизмов, помогающих нам решать отдельные задачи Бонгарда.
По той же причине, настоящая наука не делится на «нормальные» периоды и периоды «концептуальных революций», сдвиги парадигм происходят в ней постоянно, большие и маленькие, на различных уровнях. Рекурсивные графики INT и график G (рис. 32 и 34) дают нам геометрическую модель этой идеи. Их структура полна скачков на всех уровнях, причем чем ниже уровень, тем меньше скачки.
Рис. 130. Задачи Бонгарда ##70-71 (Из книги Бонгарда «Проблема узнавания»).
Чтобы поместить эту программу в контекст, я хочу упомянуть о том, как она соотносится с другими аспектами познания. Она зависит от других аспектов познания, а те, в свою очередь, зависят от нее. Поясню сначала ее зависимость от других аспектов познания. Интуиция, подсказывающая нам когда имеет смысл стереть различия, попытаться составить иное описание, вернуться по собственным следам, перейти на другой уровень и так далее, приходит только с общим опытом мышления. Поэтому так трудно определить эвристику для этих основных аспектов программы. Иногда наш опыт реального мира сложным образом влияет на то, как мы описываем и переописываем рамки. Например, кто может сказать, насколько знакомство с настоящими деревьями помогает в решении задачи #70? Маловероятно, что человеческая сеть понятий, относящихся к решению этих задач, может быть легко отделена от остальной сети понятий. Скорее интуиция, которую мы получили от созерцания и контакта с реальными предметами — расчески, поезда, цепочки, кубики, буквы, резинки и т. д., и т. п. — играет незаметную, но важную роль в решении подобных задач.
И наоборот, понимание ситуаций реального мира наверняка в большой степени зависит от зрительных образов и пространственной ориентации — таким образом, гибкий и эффективный способ представлять различные структуры (такие, как задачи Бонгарда) может только способствовать общей эффективности мыслительных процессов.
Мне кажется, что задачи Бонгарда были разработаны очень тщательно: в них есть некая универсальность, в том смысле, что у каждой из них — единственный правильный ответ. Разумеется, с этим можно спорить, утверждая, что то, что мы считаем «правильным», зависит от того, что мы — люди. Инопланетянин может совершенно с нами не согласиться. Несмотря на то, что у меня нет никакого конкретного свидетельства в пользу той или иной теории, я все-таки считаю, что задачи Бонгарда зависят от некоего чувства простоты и что люди — не единственные существа, обладающие этим чувством. То, что для этого важно быть знакомым с типично земными предметами, такими как расчески, поезда, резинки и тому подобное, не противоречит утверждению о том, что некое чувство простоты универсально, поскольку здесь важны не отдельные предметы, а тот факт, что вкупе они покрывают некое широкое пространство. Скорее всего, другие цивилизации будут обладать таким же большим репертуаром предметов и натуральных объектов и таким же обширным опытом. Поэтому мне кажется, что умение решать задачи Бонгарда находится близко к тому, что можно назвать «чистым» разумом — если таковой существует. Следовательно, с них можно начинать, если мы хотим изучить умение находить некое присущее схемам или сообщениям значение. К несчастью, мы привели здесь только небольшую часть этого замечательного собрания. Надеюсь, что многие читатели познакомятся со всем собранием, приведенным в книге Бонгарда (см. Библиографию).
Некоторые проблемы узнавания структур, которые полностью вросли в наше подсознание, довольно удивительны. Они включают: