Постоянная Планка снова появляется в 1913 году – в постулатах Бора32. И логика в этом случае та же самая: энергии орбит электронов в атоме могут принимать только значения из определенного набора, как если бы энергия была дискретной и существовала в виде порций. При переходе с одной боровской орбиты на другую электрон испускает «порцию» энергии, которая превращается в квант света. И потом в 1922 году в результате опыта, задуманного Отто Штерном и осуществленного Вальтером Герлахом, было показано, что и скорость вращения атомов тоже не является непрерывной величиной, а может принимать лишь дискретные значения.
Во всех этих явлениях: фотонах, фотоэффекте, распределении энергии электромагнитных волн, боровских орбитах, опыте Штерна и Герлаха… – фигурирует постоянная Планка ℏ.
Наконец, в 1925 году появилась теория Гейзенберга и его коллег, которая смогла сразу объяснить все эти явления, предсказывать их и рассчитывать их характеристики. В рамках этой теории оказалось возможным вывести формулу Планка для частотного распределения энергии излучения в нагретой печи, существование фотонов, фотоэлектрический эффект, результаты измерений в опыте Штерна и Герлаха и все прочие странные «квантовые» явления.
Теория была названа квантовой от слова «quantum» – «сколько». Квантовые явления – это проявления дискретности мира на очень малых масштабах. Дискретность проявляется не только в свойствах одной лишь энергии – она имеет исключительно общий характер. В теории квантовой гравитации, которой я занимаюсь, было показано, что физическое пространство, в котором мы живем, на очень малых масштабах дискретно. И в этом случае также (очень малый) масштаб «элементарных квантов пространства» определяется значением постоянной Планка.
Дискретность – это третья концептуальная составляющая квантовой теории, наряду с вероятностью и наблюдениями. Строкам и столбцам гейзенберговских матриц непосредственно соответствуют конкретные дискретные значения энергии.
Мы приближаемся к выводам первой части книги, в которой рассказывается о зарождении теории и вызванном ею смятении. Во второй части я расскажу о путях выхода из этого смятения. Но прежде чем завершить ее, хочу сказать несколько слов о том единственном уравнении, которым, как уже говорил, надо дополнить классическую физику в квантовой теории.
Это весьма забавное уравнение – оно гласит, что результат умножения положения на скорость отличается от результата умножения скорости на положение. Если бы положение и скорость были числами, то результат умножения был бы одинаковым, потому что семью девять равно девятью семь. Но положение и скорость теперь таблицы чисел, а при умножении таблиц важен порядок сомножителей. Новое уравнение определяет значение разности произведения двух величин при перестановке сомножителей.
Оно короткое, очень простое и при этом непонятное.
Не пытайтесь постичь его смысл: по этому поводу до сих пор ожесточенно спорят ученые и философы. Позже я немного поговорю о содержании этого уравнения. Но сейчас просто приведу его, потому что это – сердце квантовой механики и без него нельзя завершить знакомство с этой теорией. Вот оно:
XP − PX = iℏ.
И это все. X означает положение частицы, а P – ее скорость, умноженную на массу (физики называют это «количеством движения»). Буква i – это математический символ, означающий квадратный корень из минус единицы, а ℏ, как мы уже знаем, – это постоянная Планка, деленная на 2π.
В некотором смысле Гейзенберг с компанией дополнили физику одним лишь этим простым уравнением, а все остальное – просто его следствие. Из этого уравнения вышли и квантовые компьютеры, и атомная бомба.
Но при невероятно простой форме уравнения смысл его оказался совершенно непонятным. Квантовая теория предсказывает дискретность, переходы, фотоны и все остальное через добавление к классической физике одного-единственного уравнения из восьми символов. Уравнения, которое гласит, что результат умножения положения на скорость отличается от результата умножения скорости на положение. Полный мрак. Похоже, Мурнау не просто так выбрал остров Гельголанд для съемки сцен «Носферату».