Но Гейзенберг прав. Постепенно стало очевидно, что волновая механика не яснее геттингенской матричной. Это другой математический аппарат, который позволяет получать правильные численные результаты. Но хотя он и проще в применении, сам по себе, вопреки надеждам Шредингера, он не дает ясного непосредственного представления о картине происходящего. Волновая механика не понятнее гейзенберговских матриц. Если всякий раз, глядя на электрон, мы видим его расположенным в одном конкретном месте, то как он может представлять собой размазанную в пространстве волну?
Спустя годы Шредингер, который все же стал одним из тех, кому удалось глубже других разобраться в вопросах квантовой теории, признал свое поражение: «Это было время… когда создатели волновой механики [то есть Шредингер] тешили себя иллюзией, что им удалось исключить из квантовой теории дискретность. Но дискретность, исключенная из уравнений, появляется в момент сравнения теории с тем, что наблюдается»22.
И снова речь о «том, что наблюдается». Но – еще раз – как может природа знать, наблюдаем мы ее или нет?
А вот и вклад Макса Борна в решение этого вопроса: он первым осознает23 смысл шредингерской функции ψ. Борн, как скромный серьезный инженер, был наименее ярким и известным среди создателей квантовой теории, но, пожалуй, ее истинным творцом и, как говорят американцы, единственным «взрослым дома», как в переносном, так и в буквальном смысле. Ему уже в 1925 году было совершенно ясно, что для квантовых явлений нужна совершенно новая механика, именно он внушил эту мысль молодым коллегам, именно он тут же уловил правильную мысль в первых сумбурных расчетах Гейзенберга и превратил их в собственно теорию.
Борн понял, что значение шредингерской волновой функции ψ в конкретной точке пространства определяет вероятность наблюдения электрона в этой точке24. Если атом, от которого ушел электрон, окружен счетчиками Гейгера, то значение ψ в точке, где находится счетчик, определяет вероятность того, что именно этот, а не другой счетчик зарегистрирует электрон.
Следовательно, шредингерская функция ψ не представляет никакой реальной сущности – это всего лишь инструмент для вычисления вероятности реализации реального события, как прогноз погоды, в котором говорится о том, что может произойти.
И сразу стало понятно, что то же верно и в отношении геттингенской матричной механики: математический аппарат выдает вероятностные, а не точные предсказания. Квантовая теория как в гейзенберговском, так и в шредингерском вариантах предсказывает не определенные явления, а их вероятности.
Почему вероятности? Обычно о вероятности говорят в случае отсутствия полной информации. Вероятность того, что на рулетке выпадет 5, равна одной тридцать седьмой. Если в точности знать начальное состояние шарика в момент запуска рулетки, а также действующие на шарик силы, то можно предсказать, какой номер выпадет. (В восьмидесятые годы компания очень умных ребят со спрятанным в шарфе миниатюрным компьютером выиграла миллионы долларов в казино в Лас-Вегасе25…) Мы не знаем в точности, что же произойдет, и говорим о вероятности в случае, когда не располагаем полной информацией о задаче.
Квантовая механика Гейзенберга и Шредингера предсказывает вероятности – так что же, эта теория не учитывает всю относящуюся к задаче информацию? И поэтому позволяет вычислить лишь вероятность? Или же природа действительно скачет туда-сюда случайным образом?
Атеист Эйнштейн предложил выразительную формулировку этого вопроса: «Неужели Бог играет в кости?»
Эйнштейн любил образно выражаться и, хотя называл себя атеистом, любил употреблять слово «Бог». Но эту фразу можно воспринимать и буквально: Эйнштейн любил Спинозу, для которого «Бог» был синонимом «Природы». Так что «Неужели Бог играет в кости?» дословно означает «Неужели законы Природы не детерминистичны?». Как мы увидим, через 100 лет после полемики Гейзенберга и Шредингера этот вопрос все еще остается предметом споров.
В любом случае Шредингерская волновая функция ψ сама по себе не может объяснить непонятные квантовые свойства. Недостаточно считать электрон просто волной. Волновая функция ψ – это нечто мудреное, определяющее вероятность того, что электрон – то есть частица, всегда сосредоточенная в одной точке, – наблюдается в конкретном месте, а не в каком-либо другом. Волновая функция ψ изменяется со временем в соответствии с выведенным Шредингером уравнением, только пока мы на нее не смотрим. Стоит на нее взглянуть, и… она тут же схлопывается в точку и выглядит как частица26.