Выбрать главу

Получается, что простого наблюдения достаточно, чтобы изменить реальность.

К туманной идее Гейзенберга, утверждавшего, что теория описывает только наблюдения, а не то, что происходит между ними, добавляется представление о том, что теория предсказывает лишь вероятность наблюдения того или иного явления. Все становится еще загадочнее.

3. «Зернистость» мира – «кванты»

Я рассказал о зарождении квантовой механики в 1925 и 1926 годах и о двух основных аспектах теории: предложенная Гейзенбергом необычная идея описывать только наблюдаемое и то, что, как понял Борн, теория предсказывает лишь вероятности.

А вот третья основная идея. Чтобы объяснить ее, лучше вернемся назад за два десятилетия до судьбоносного путешествия Гейзенберга на Священный остров.

В начале ХХ века странным и непонятным казалось не только необычное поведение электронов в атомах. Были и другие загадочные явления. Общим для них была странная дискретность энергии и других физических величин. До открытия квантовой теории никто и не подозревал, что энергия может быть дискретной. Например, энергия брошенного камня зависит от его скорости, которая может принимать любое значение, и следовательно, энергия также может принимать любое значение. Но проведенные на рубеже веков эксперименты обнаружили очень необычные свойства энергии.

* * *

Например, странным образом ведут себя электромагнитные волны внутри печи. Тепло (то есть энергия) распределено между разными частотами не так, как ожидалось: на высокие частоты почти ничего не приходится. В 1900 году – за 25 лет до того, как Гейзенберг отправился на остров Гельголанд, – немецкий физик Макс Планк предложил формулу27, которая хорошо описывала распределение энергии в спектре (то есть в зависимости от частоты)28. Планку удалось вывести ее на основе общих физических законов, но для этого пришлось дополнить их необычной гипотезой: энергия на любой частоте может излучаться только порциями, кратными некой величине.

Как будто энергия передается лишь пакетами. Для получения планковской формулы надо предположить, что величина этих пакетов различна для волн разной частоты и пропорциональна частоте29. То есть высокочастотные волны состоят из пакетов с большей энергией. Энергии нет на очень высоких частотах потому, что ее не хватает для наполнения больших пакетов.

На основе экспериментальных данных Планк вычислил постоянную, равную коэффициенту пропорциональности между энергией и частотой, и назвал ее h, при этом не очень понимая ее смысл. Сейчас вместо h обычно используют величину ℏ, равную h, деленной на 2π. Дирак ввел эту приведенную постоянную Планка, обозначив ее «ℏ», чтобы каждый раз не выписывать сочетание «h/2π», которое очень часто фигурирует в теоретических расчетах. Символ ℏ называют «h с чертой» и зачастую просто «постоянной Планка» – также как и h без черты, что иногда приводит к путанице. Сейчас это самое характерное обозначение в квантовой механике. (У меня есть даже футболка с вышитой маленькой буквой ℏ, которой я очень горжусь.)

* * *

Спустя пять лет Эйнштейн предположил, что свет и вообще любые электромагнитные волны состоят из элементарных «кусочков» с определенной энергией, которая зависит от частоты30. Это были первые «кванты». В наше время их называют фотонами – квантами света. Постоянная планка h определяет их величину: энергия каждого фотона равна h, помноженной на частоту состоящего из фотонов света.

Предположив, что эти «элементарные кусочки энергии» реально существуют, Эйнштейн смог объяснить в то время еще непонятное явление под названием «фотоэффект»31, предсказав его параметры до фактического их измерения.

Эйнштейн первым (еще в 1905 году) понял, что возникшие в связи с этими явлениями вопросы настолько серьезны, что требуют пересмотра всей механики. Поэтому он считается духовным отцом квантовой теории. Свою идею, что свет – это не только волна, но также и облако фотонов, он сформулировал весьма туманно, но именно она навела сначала де Бройля на мысль о том, что все элементарные частицы представляют собой волны, а потом Шредингера на мысль ввести волновую функцию ψ. Так что Эйнштейн стоял сразу у нескольких истоков квантовой механики: Бор благодаря нему понял, что механика требует полного пересмотра, Гейзенберг решил сосредоточиться исключительно на наблюдаемых величинах, а Шредингер исходил из идеи де Бройля, которого вдохновила эйнштейновская гипотеза о фотонах. Более того: Эйнштейн также первым применил вероятностный подход к изучению атомных явлений и тем самым навел Борна на мысль, что функция ψ характеризует вероятность. Квантовая механика возникла в результате «командной игры».