Оператор - это первичная синтаксическая единица в программе. Большинство компиляторов выполняют некоторую оптимизацию на этом уровне.
Блок - это последовательность операторов, для которой существуют единственная точка входа и единственная точка выхода. Линейный вид блока инструкций позволяет компилятору выполнять оптимизацию, основывающуюся на промежутках жизни различных данных и выражений, используемых внутри блока. Оптимизирующий компилятор выделяет операционную структуру программ путем конструирования ориентированного потокового графа программ, в котором каждая вершина представляет основной блок, а связи между вершинами представляют потоки управления. Большинство компиляторов производят оптимизацию на уровне блока.
Цикл содержит выполняемую многократно последовательность операторов. Поскольку многие программы проводят в циклах большую часть времени своего выполнения, оптимизация в этой области может дать существенное улучшение характеристик исполнения программы. Являясь обычной для компиляторов на больших компьютерах и миникомпьютерах, оптимизация на уровне цикла является новой для компиляторов Си на PC.
Процедуры - это операторы, которые содержат целые подпрограммы или функции. Оптимизация на этом уровне вообще не выполняется компиляторами для PC.
Наиболее сложный уровень оптимизации, уровень программы, в настоящее время рассматривается чисто теоретически и не включается ни одним доступным на PС, миникомпьютерах, и больших компьютерах компилятором Си. Производители, которые утверждают, что их компиляторы выполняют глобальную оптимизацию, имеют в виду уровень процедур, но не программы.
Оптимизирующие преобразования могут быть зависящими или независящими от архитектуры компьютера. Процесс компиляции компьютерной программы включает два основных действия: синтаксический/семантический анализ и генерацию кода. Синтаксический/семантический анализ существенно зависит от грамматики и специфичен для языка. Генерация кода является общей и прекрасно может быть использована для поддержки первой стадии для любого количества языков программирования.
Исходный текст конкретного языка первым делом транслируется в общую промежуточную форму, которая последовательно обрабатывается для выработки на стадии генерации машинно-зависимого кода. Машинно-независимая оптимизация, такая как выделение общих подвыражений и вынесение инвариантного кода, применяется к промежуточному коду. Машинно-зависимая оптимизация применяется к результату стадии генерации кода и использует набор команд конкретного процессора. Эта оптимизация известна как "щелевая" оптимизация, потому что эти преобразования выполняются внутри маленького окна (5 - 10 инструкций машинного уровня). Типичные примеры щелевой оптимизации включают удаление излишних операций загрузки/сохранения регистров, удаление недостижимого кода, выпрямление передач управления, алгебраические упрощения, снижение мощности (команд) и использование команд, специфических для конкретного процессора.
Методы оптимизации
Существуют различные методы машинно-зависимой и машинно-независимой оптимизации кода. Они могут применяться на всех синтаксических уровнях. Одним из простейших методов является "размножение констант". При его применении любая ссылка на константное значение замещается самим значением. В следующем примере повышается эффективность благодаря удалению трех адресных ссылок и замене их константами:
x = 2;
if( a < x && b < x)
c = x;s
переводится в
x = 2;
if(a < 2 && b < 2)
c = 2;
Целиком связано с размножением констант "размножение копий". В этом методе копируются переменные вместо константных значений. Например,
x = y;
if(a < x && b < x)
c = x;
переводится в
x = y;
if(a < y && b < y)
c = y;
Размножение констант и копий также может удалить излишние присваивания (x = 2 и x = y в примерах). Среди описываемых компиляторов только Microsoft C 5.0 и WATCOM C 6.0 применяют размножение констант.
Метод "свертки констант" (константная арифметика) сводит выражения, которые содержат константные данные, к возможно простейшей форме. Константные данные обычно используются в программе либо непосредственно (как в случае чисел или цифр), либо косвенно (как в случае объявленных манифестных констант). Свертка констант сводит следующий оператор: