Выбрать главу

Однако помимо здоровья, то есть физиологического благополучия, человек как живой организм обладает еще и огромным количеством других признаков, сильно отличающих нас от других животных, – это психика, интеллект, эмоции. Эти признаки напрямую не зависят от генетики, по крайней мере, наука до сих пор не нашла явной и четкой связи. Скорее всего, этой связи нет, ровно поэтому мы как вид настолько адаптивны к окружающей среде, способны меняться, прорабатывать свой опыт и абсолютно по-разному реагировать на тот или иной раздражитель при разных условиях.

Разумеется, тут есть нюансы, и генетика определенным образом вмешивается в наше понимание себя как уникальной личности, формируемой окружением, а не последовательностями нуклеотидов. Разберем на примере так называемого «гена Воина», который, согласно некоторым исследованиям, связан с уровнем агрессии, проявляемым человеком. Этот ген (официальная аббревиатура – MAOA) кодирует фермент моноаминооксидазу А, который опосредует химические превращения нейромедиаторов – серотонина, дофамина и норадреналина. Ферменты – это машины, катализирующие химические реакции с разной степенью эффективности, что влияет на скорость протекания катализируемых реакций. При низкой активности фермента моноаминооксидазы А из-за определенных генетических изменений в гене MAOA разрушение нейромедиаторов при передаче нервного импульса замедляется, что вызывает продолжительную стимуляцию некоторых областей головного мозга и, как следствие, усиленный психологический ответ (чаще непропорциональную агрессию). Это достоверно работает на модельных животных (мышах, которые становятся намного более агрессивными по отношению к чужакам), но на человеке статистика местами оказывается сомнительной. Напротив, наиболее статистически значимое влияние на поведение человека в будущем оказывает его окружение, воспитание, события в детском и подростковом периоде. Все же человеческая психика и поведение устроены намного сложнее, чем у какого-либо другого животного, и мы способны меняться и работать над собой.

Гены можно искусственно изменить?

В других главах этой книги мы затрагиваем тему наследственности и на что она может влиять. В общем смысле наследственность можно понимать как совокупность признаков, проявление которых в организме в течение жизни целиком или частично обусловлено генетикой, то есть набором генетических изменений в хромосомах, переданных от родителей. Некоторые из этих генетических изменений могут быть не самыми приятными для жизни, другие – летальными. Человечество на данном этапе развития науки уже умеет адресно изменять какой-либо короткий участок хромосомы, например, заменяя участок с опасной мутацией на нормальную последовательность нуклеотидов без мутации, однако это не применяется на людях. В этой главе мы поговорим о том, как можно поменять участок ДНК и какие риски это несет.

Существует множество разновидностей так называемых эндонуклеаз – белков, способных «разрезать» ДНК в каком-либо месте. Обычно это место узнается через последовательность нуклеотидов. Например, при обнаружении последовательности нуклеотидов …AAGGTTCC… специфичный для нее фермент, словно ножницы, может сделать разрез между G и T, создавая два фрагмента …AAGG и TTCC…

Такие ферменты – эндонуклеазы – были давно известны науке и активно используются в методах молекулярной биологии и генной инженерии, однако они не очень полезны для широкого и прицельного применения в больших геномах из-за короткой длины последовательности «букв ДНК», или сайта рестрикции. Короткий сайт может быть обнаружен огромное количество раз в больших геномах (геном человека достаточно большой – более 3 миллиардов пар нуклеотидов), и разрез может произойти на многих таких сайтах.

Эта проблема решилась открытием CRISPR/Cas-систем, которые можно программировать на узнавание специфичного и, главное, длинного фрагмента ДНК для его разрушения. По сути, CRISPR/Cas-системы – это комплексы нуклеотидной последовательности – «набор букв ДНК» и эндонуклеазы, которые эту последовательность разрезают.

Комплекс ищет нужную нуклеотидную последовательность в геноме с последующей работой эндонуклеазы, чтобы разрезать именно его. Подобную процедуру можно использовать, например, для вырезания фрагмента ДНК, несущего опасную мутацию.