Глава 2
Знакомьтесь: рибосома
Стоит упомянуть ДНК, как почти все понимающе закивают в ответ. Все мы знаем – или думаем, что знаем, – что такое ДНК. Эта молекула определяет нашу сущность: кто мы такие и что от нас унаследуют дети. Она превратилась в метафору, описывающую фундаментальные свойства почти чего угодно. «Это у них в ДНК» – говорим мы, даже рассуждая о какой-нибудь корпорации.
Однако, заговорив о рибосоме, вы рискуете наткнуться на непонимание даже у некоторых ученых. Несколько лет назад в радиоэфире передачи «Материальный мир» на ВВС Квентин Купер сказал мне, что гость с прошлой передачи просто возмутился, что на обсуждение глаза было выделено всего полвыпуска, а какой-то обычной молекуле (рибосоме) посвятили целый выпуск. Важно не только то, что большинство компонентов глаза формируется благодаря рибосомам – практически любая молекула в любой клетке любого организма собирается либо благодаря рибосомам, либо под действием ферментов, которые на них синтезируются. На самом деле, пока вы это читаете, рибосомы в каждой из триллионов клеток вашего тела успевают сделать тысячи белков. Миллионы существ обходятся без глаз, в то время как рибосомы нужны любому организму. Открытие рибосомы и ее роли в синтезе белков – это кульминация одного из величайших триумфов в истории современной биологии.
Прибыв в Калифорнию для изучения биологии, я, как и большинство физиков, понятия не имел о рибосоме и весьма приблизительно представлял, что такое ген. Знал, что в генах заключены признаки, наследуемые от предков и передаваемые потомкам. Оказалось, что все гораздо интереснее. Это информационные единицы, обеспечивающие развитие полноценного организма из единственной клетки, например из оплодотворенного яйца. Хотя практически во всех клетках содержится полный набор генов, в разных тканях активируются разные совокупности генов, поэтому нервная клетка отличается по свойствам от эпителиальной. Но что же такое гены?
В широком смысле ген – это участок ДНК, содержащий информацию о том, как и когда синтезировать белок. Белки выполняют тысячи биологических функций. Например, обеспечивают мышечные сокращения, позволяют воспринимать свет и тепло, осязать, бороться с болезнями, даже мыслить и запоминать. Многие белки, называемые ферментами, катализируют химические реакции, при которых в клетке синтезируются тысячи других молекул. Итак, белки отвечают не только за структуру и форму клетки, но и за ее функционирование.
Открытие того факта, что информационная единица из ДНК служит для синтеза белка, стало вершиной творческого десятилетия, которое началось с публикации классической статьи Джеймса Уотсона и Френсиса Крика о двойной спирали ДНК в 1953 году. Эта структура позволяет сделать вывод, как молекула работает, передает информацию и самовоспроизводится, но долго оставалось тайной, как клеточная информация дублируется при делении клетки и как потомки наследуют эту информацию при репродуктивном цикле.
Рис. 2.1. Структура ДНК
Когда Уотсон экспериментировал с картонными шаблонами азотистых оснований, его осенила блестящая идея: он осознал, что аденин (A) из одной спирали может образовывать химическую связь (пару) только с тимином (T) из другой спирали, тогда как гуанин (G) из одной спирали аналогичным образом соединяется с цитозином (C) из другой. Контуры любой пары оснований, будь то АТ или GC, примерно одинаковы, причем форма одной спирали задает форму другой, а порядок оснований в одной спирали зависит от порядка оснований в другой. При делении клетки двойная спираль расплетается, и каждая половина содержит достаточную информацию, чтобы послужить шаблоном для новой спирали. В результате из одной молекулы ДНК получаются две, то есть гены самовоспроизводятся, передавая наследственные признаки из поколения в поколение.
Рис. 2.2. Белки
Структура ДНК подсказала, как гены должны копироваться и передаваться, но не продемонстрировала их участия в синтезе белков. Дело в том, что каждая молекула ДНК – это длинная цепочка «первоэлементов», в состав которых входят четыре типа азотистых оснований. Но белки – это совершенно иные цепочки, состоящие из аминокислот, и химические связи в них тоже абсолютно другие. Исключительное разнообразие белков обусловлено тем, что двадцать аминокислот, входящих в их состав, сильно отличаются друг от друга по химическом свойствам. Их длина и порядок в каждой белковой цепочке уникальны, и, что удивительно, белок содержит информацию, необходимую для правильного свертывания цепочки, чтобы та приобретала нужную форму и правильно функционировала. Крик догадался, что порядок оснований в ДНК кодирует порядок аминокислот в белке, но оставался вопрос: каким образом?