Бомба показала возможности физики. Абстрактные чертежи оказались столь основательными, что смогли изменить историю. Однако в более спокойные послевоенные годы ученые хотя и осознавали хрупкость своей теории, но все же полагали, что квантовая механика позволяет делать пусть и приблизительные, но вполне работоспособные расчеты, касающиеся природы света и вещества. На поверку же теория оказалась неверна. И не просто неверна — бессмысленна. Кому понравится теория, безупречная при выполнении приблизительных расчетов и так нелепо рассыпающаяся при попытке сделать более точные вычисления? Европейцы, создавшие квантовую физику, делали все возможное, чтобы укрепить теорию. Но безуспешно.
Откуда могли они хоть что-то узнать? Масса электрона? Да ради бога! Приблизительные расчеты давали вполне приемлемые значения, при более точных получали бесконечность, — полнейший абсурд. Само понятие массы расплывалось: электрон, массу которого пытались рассчитать, не был полностью ни материей, ни энергией[5]. Фейнман же относился к проблеме крайне несерьезно. Его тонкую записную книжку оливкового цвета из магазина «Всё за доллар» заполняли в основном телефоны женщин и пометки хорошо танцует или не звонить, когда у нее ПМС. На последней странице этой книжки Фейнман однажды записал короткое хайку:
Даже когда квантовая физика работала и позволяла предсказывать, как будут протекать те или иные природные явления, ученые все равно испытывали чувство неудовлетворенности: слишком много белых пятен оставалось на картине, призванной, по их мнению, отражать реальность. Некоторые из них полагались на авторитетное мнение Вернера Гейзенберга[6] «Уравнению лучше знать». Но только не Фейнман. Впрочем, особенно и выбирать-то тогда не из чего было. Ученые не могли даже вообразить, что представляет собой атом, который они только что успешно расщепили. Они создали и сами же потом отбросили планетарную модель атома, в которой мельчайшие частицы вращались вокруг ядра, словно планеты вокруг Солнца. Теперь эту модель нечем было заменить[7]. Можно сколько угодно писать на досках числа и символы. Но картина по-прежнему размыта и неясна.
Ко встрече в Поконо Оппенгеймер достиг пика своей славы. Он уже считался героем — создателем атомной бомбы, но еще не стал злодеем и фигурантом судебных процессов по безопасности 1950-х. Номинально председателем был он, но на встрече присутствовали и более именитые ученые: Нильс Бор, создатель квантовой теории, прибывший из своего института в Дании; Энрико Ферми, разработчик цепной ядерной реакции, прибывший из лаборатории в Чикаго; Поль Дирак[8], британский физик-теоретик, чье знаменитое уравнение электрона как раз и способствовало возникновению кризиса[9]. Все они были нобелевскими лауреатами. Большинство участников встречи, за исключением Оппенгеймера, либо уже получили премию, либо готовились к этому в будущем. Впрочем, некоторые европейские ученые отсутствовали. Например, Альберт Эйнштейн, привыкавший к роли заслуженного пенсионера. В остальном же в Поконо собрался весь цвет современной физики.
Когда слово взял Фейнман, уже стемнело. Стулья сдвинулись. Светила не совсем понимали, что хочет сказать этот порывистый молодой человек. Большую часть дня они слушали виртуозный доклад ровесника Фейнмана Джулиана Швингера из Гарвардского университета. И хотя за рассуждениями Швингера уследить было трудно (опубликованная позднее работа нарушала правила журнала Physical Review не использовать формулы, не умещающиеся на ширине страницы), доказательства он представил вполне убедительные. Фейнман же предлагал их вниманию все меньше и меньше столь тщательно выписанных уравнений. Эти люди знали его по работе в Лос-Аламосе, кто-то лучше, кто-то хуже. Сам Оппенгеймер в приватных беседах отмечал Фейнмана как самого одаренного молодого физика, участвовавшего в разработке атомной бомбы. Как Фейнману удалось заработать такую репутацию, точно объяснить никто из них не мог. Некоторые из присутствовавших знали, какой вклад он внес в создание ключевого уравнения мощности ядерного взрыва (хотя до сих пор эти данные засекречены, несмотря на то что немецкий шпион Клаус Фукс оперативно передал их своим недоверчивым руководителям в Советском Союзе). Знали они и о его теории преддетонации, оценивающей вероятность того, что ядерная реакция в большей части урана может начаться преждевременно. И хотя никто ничего конкретного о научных достижениях Фейнмана не знал, все признавали его нестандартное мышление. Все помнили, как он спроектировал первый крупномасштабный вычислительный комплекс — гибрид новых электромеханических калькуляторов и команды женщин, использующих перфокарты. Все помнили, как он буквально завораживал своими лекциями по элементарной арифметике, как неистово нажимал кнопку в игре, пытаясь столкнуть два электронных поезда, как мог демонстративно неподвижно сидеть в военном грузовике, освещаемый бело-сиреневой вспышкой мощнейшего взрыва столетия.
5
Так описана проблема перенормировки в квантовой электродинамике (КЭД) — проблема, которую Фейнман с успехом решил.
6
Вернер Карл Гейзенберг (1901–1976) — немецкий физик-теоретик, один из создателей квантовой механики, лауреат Нобелевской премии по физике (1932).
7
До того как Бор сформулировал свои знаменитые постулаты о стационарных орбитах электрона, подобное вращение означало бы, что электроны со временем потеряют энергию и упадут на ядро. Чего, конечно же, не происходило.
8
Поль Дирак (1902–1984) — один из создателей квантовой механики. Лауреат Нобелевской премии по физике 1933 года (совместно с Эрвином Шрёдингером).
9
Уравнение Дирака предсказывало существование электрона с положительным зарядом (известного теперь как позитрон), чего экспериментально тогда еще не наблюдали. Позже Дайсон и Фейнман предположат, что позитрон — это движущийся обратно во времени электрон. Но об этом — далее в книге.