Напомним, что еще Гамов столкнулся с парадоксом: из четырех нуклеотидов может быть построено 64 разных кодонов, а для построения белков используется только 20 различных аминокислот. Решение этого парадокса оказалось в следующем. Большинство аминокислот может кодироваться несколькими кодонами. После выяснения этого обстоятельства генетический код назвали вырожденным.
В таблице 1 приведены кодоны, но не в самой ДНК, а в РНК-посреднике (матричной РНК, или мРНК), образующейся на ДНК, и соответствующие им аминокислоты в белках.
Кроме того, как видно из таблицы, реально для кодирования используются не все возможные кодоны. Три из этих «лишних» кодонов выполняют функцию стоп-сигналов, обеспечивая прекращение синтеза белковой цепи.
Если внимательно посмотреть на таблицу 1, то видно, что вырожденность генетического кода носит не совсем случайный характер. Хотя код триплетный, основную нагрузку несут первые два нуклеотида в каждом кодоне. Чаще всего в разных кодонах, кодирующих одну и ту же аминокислоту, отличается лишь третий нуклеотид.
Генетический код первоначально был расшифрован у таких простых организмов, как фаги и бактерии. В дальнейшем оказалось, что он универсален (за очень редким исключением) для геномов всех существующих ныне живых организмах (от бактерий до человека). Небольшие отличия, о которых мы поговорим далее, были выявлены при сравнении ядерного и митохондриального геномов.
Итак, как в привычном нам тексте книги, вся информация записана в ДНК последовательностью расположения четырех составляющих ее «букв» — нуклеотидов. Таким образом, ДНКовый текст написан с помощью А, Т, Ц, Г-алфавита. При этом только текст одной из двух цепей ДНК обычно кодирующий, а другая цепь, как правило, некодирующая. Хотя известно, что в каждом правиле есть исключения. Если читатель попробует написать этими четырьмя буквами какие-нибудь русские слова, то у него ничего не получится. «Словом» в ДНКовом тексте, условно говоря, служит определенное сочетание трех нуклеотидов, которому соответствует конкретная аминокислота в белке, являющемся также полимером. Таким образом, в клетке четырьмя буквами записано два десятка «слов» (аминокислот — составных частей белков). И, наконец, как «предложение» в ДНКовом тексте можно рассматривать полный набор триплетов, кодирующих определенный белок, то есть ген. Таким образом, генетический алфавит состоит всего из 4 букв, а генетический словарь из 20 слов. В этой связи вспомним, что даже словарь Эллочки-людоедки из романа И. Ильфа и Е. Петрова «Двенадцать стульев» состоял из 30 слов, а «Словарь языка произведений А. С. Пушкина» насчитывает примерно 20 тыс. слов.
Существует строгая закономерность: чем длиннее код (чем больше в нем знаков), тем короче тексты. Огромный по размерам код представляют собой, например, китайские иероглифы. В результате этого иероглифические тексты существенно более кратки по сравнению с другими системами письма, в том числе и нашей. Однако для создания генетического кода природа выбрала всего 4 «буквы». Такой код предполагает наличие длинных текстов, что и реализовалось природой в виде создания гигантских молекул ДНК. При написании полного «текста» генома человека потребовалось около 3,2 млрд. «букв». Для сравнения: в священной книге Бытия, написанной на древнееврейском языке, содержится всего 78100 букв.
Размножение ДНК (репликация)
Важно то, что структура ДНК, открытая Уотсоном и Криком, многое прояснила относительно разных механизмов функционирования этой молекулы в клетке. ДНК не только кодирует генетическую информацию, но и самовоспроизводится (удваивается) при каждом клеточном делении. И вскоре уже было экспериментально установлено, что одновременно с делением клетки ДНК снимает с самой себя точные копии в процессе удвоения, или репликации. Во время клеточного деления слабые связи между двумя цепями двойной спирали ДНК разрушаются, в результате чего нити разделяются. Затем на каждой из них строится вторая «дочерняя» (комплементарная) цепь ДНК. В результате этого молекула ДНК удваивается, как и клетка, и в обеих клетках оказывается по одной полной копии ДНК. Копии должны быть полностью идентичными, чтобы сохранить всю генетическую информацию.