Выбрать главу

Попытка преодолеть это недоверие и есть основной мотив предлагаемой вашему вниманию геометрической рапсодии.

Предисловие можно назвать громоотводом.

Георг Кристоф Лихтенберг

I. Поцелуй по расчету

Высь, ширь, глубь.

Лишь три координаты.

Мимо них где путь?

Засов закрыт.

Валерий Брюсов

"Мамочка, почему я все время хожу по кругу?" — "отстань, глупышка, а то я приколю к полу и вторую твою ногу!" — так звучит старая детская шутка. Ее, наверное, придумал древний математик, когда был мальчишкой. Повзрослев, он сформулировал ее по-другому: "Окружность — это совокупность точек на плоскости, одинаково удаленных от какой-то одной точки на этой же плоскости". (Взгляните, например, на фрагмент гравюры М. К. Эсхера "Завиток" — вы найдете ее, как и другие работы этого художника, с помощью указателя, помещенного в конце книги. Созданное воображением художника существо использует основное свойство окружности для передвижения.) Подумав немного, древний математик написал еще одну фразу, покороче: "Сфера — это совокупность всех точек, равно удаленных от одной какой-то точки". (Прекрасная иллюстрация на тему "сфера" — еще две гравюры того же автора: "Спирали на сфере" и "Буковый шар".)

С той поры прошло много лет, а новых хороших геометрических шуток не появилось. Создавшееся положение, конечно, беспокоило серьезных ученых, например Исаака Ньютона. Мы бы, вероятно, никогда не узнали об этом, но, по счастью, друг великого математика оксфордский астроном Дэвид Грегори вел дневник. В один из дней 1694 года он подробнейшим образом записал, как они с Ньютоном крупно поспорили: Грегори по обыкновению размышлял вслух на свои небесные темы — в этот раз о том, как звезды различной величины размещаются на небе. И тут вдруг Ньютон перебил его: "Спорим, что тринадцать одинаковых шаров, как их ни расположи, не могут касаться еще одного шара!" Грегори немного подумал и принял спор. Но сколько друзья ни изводили бумаги и слов, ни один из них не убедил другого. И лишь через 180 лет Рейнгольд Хоппе сумел доказать, что великий математик и в этом научном споре оказался прав. Но доказательство Хоппе было таким громоздким, а проблема настолько увлекала ученых, что до самого последнего времени они без устали решали "задачу четырнадцати шаров". Самое простое доказательство придумал англичанин Джон Лич в 1956 году. А в 1962 году в "Трудах Нью-Йоркской Академии наук" появилась большая статья, посвященная все той же задаче.

Но если считать — хотя это было бы большой ошибкой — все эти работы чисто геометрическим юмором, то двум последним шуткам предшествовало несколько более плоских острот. Плоских — в прямом смысле этого слова.

В июне 1936 года читатели журнала "Нейчур" были приятно удивлены. Известнейший английский химик Фредерик Содди, который получил Нобелевскую премию за то, что открыл изотопы, на этот раз порадовал ученый мир поэмой, состоящей из трех стансов. Она называлась (в вольном переводе) "Поцелуй по расчету", и первый ее станс звучал приблизительно так:

Когда к устам прильнут уста, Быть может голова пуста. Но если вдруг четыре круга Решат поцеловать друг друга, То лишь геометра расчет Их к поцелую приведет. Вариантов два, любой не плох: Все три в одном, один средь трех (1)[2]. Коль три в одном, то изнутри К гиганту тянутся они. (2). Но и средь трех он рад вполне: Три поцелуя — все извне.

В следующем стансе Содди в том же поэтическом ключе сообщает придуманную им формулу: удвоенная сумма квадратов обратных радиусов равна квадрату их суммы.

В этой несложной формуле Содди предусмотрел и тот случай, когда больший круг охватывает три меньших: тогда надо просто брать величину радиуса со знаком "минус". Всякому ясно, что теперь ничего не стоит вычислить радиус четвертого круга, чтобы он смог "поцеловаться" с тремя другими.

Впоследствии выяснилось, что формулу эту знал еще Рене Декарт. Но Содди открыл ее вполне самостоятельно. И кроме того, он не удовлетворился целующимися кругами. В третьей и последней части своего "Поцелуя по расчету" Содди перешел с плоскости в пространство от кругов к сферам. И тут прежде всего обнаружилось, что в целовальном обряде принимают участие не четыре, а пять сфер, а чтобы они могли коснуться друг друга, им надо, говоря презренной прозой, подчиниться требованиям формулы: утроенная сумма квадратов обратных радиусов равна квадрату их суммы.

вернуться

2

Здесь, а также далее, в скобках стоят номера рисунков, гравюр, фотографий и чертежей, которые, если взглянуть на них, порой могут доставить несколько секунд удовольствия, не говоря уже о том, что они имеют прямое отношение к тексту.