Выбрать главу

Евклидово пространство можно определить как бесконечное, изотропное и однородное пространство. Любые две его точки полностью эквивалентны. Поместим в любой точке пространства три источника световых лучей, распространяющихся во взаимно перпендикулярных направлениях. Эти лучи образуют координатные оси Ox, Oy, Oz. Перенесем источники света вдоль одной из осей, например оси z. Новые оси O'x', O'y' будут параллельны Ox и Oy. Длины осей бесконечны, поэтому перенесение источников из точки O в точку O' не изменит геометрическую ситуацию. Аналогичное рассуждение можно провести и вращая одновременно все источники в точке на один и тот же угол. Неизменность свойств пространства при перемещениях и вращении отражает основные свойства евклидова пространства — однородность и изотропию. При указанных выше операциях сохранят свою форму и основные уравнения кривых.

Какова цена, которую следует уплатить за все преимущества аналитической геометрии? Используя ее методы, мы утрачиваем наглядность, привычную нам с детства. Аналитическая геометрия невольно порождает ностальгию по безвозвратно ушедшим школьным годам.

6. ГЕОМЕТРИЯ В ЦЕЛОМ И ГЕОМЕТРИЯ В МАЛОМ

Наши привычные представления о геометрических фигурах основаны на образе, вписанном, вложенном в евклидово пространство. Да и сама евклидова геометрия широко использует образы объемов или поверхностей, вложенных в евклидово пространство. Для общего представления о фигурах подобная картина вполне достаточна. Однако такие образные представления являются в некотором смысле атавизмом, оставшимся в наследие от убеждения в единственности евклидовой геометрии, понимаемой как ветвь математики. Как только сформировались идеи неевклидовой геометрии, возникла необходимость описания поверхностей-пространств любой размерности независимо от фона — пространства, куда вкладываются эти поверхности-пространства. Последние в такой постановке задачи выступают, как носители самостоятельной автономной геометрии, не связанные с осями координат, вписанными в глобальное евклидово пространство-фон.

Подобный подход был в прошлом столетии предложен К.Гауссом и Б.Риманом и является основой дифференциальной геометрии. Это сравнительно сложная математическая дисциплина, и мы здесь ограничимся качественными иллюстрациями основных ее идей, адресуя желающих познакомиться с ней детальнее к соответствующим учебникам и монографиям.[5]

Чтобы понять основные идеи геометрии поверхностей, обратимся вначале к привычным образам евклидовой плоскости двумерного пространства и двумерной сферы, рассматриваемой как автономное пространство. Известно, что основным свойством евклидова пространства является изотропия и однородность — полная эквивалентность его точек. Однако этого фундаментального свойства евклидова пространства недостаточно для его однозначного определения. Утверждение, что однородное и изотропное пространство есть пространство Евклида, не точно, поскольку этому свойству однородности и изотропии удовлетворяет также и сфера: все ее точки также эквивалентны относительно поворотов осей координат и их трансляции. Иначе говоря, глобальные относительно этих операций свойства обоих пространств одинаковы. Чтобы их количественно отличить, нужно ввести локальные характеристика, характеризующие различие плоского и сферического пространств. Иначе говоря, нужно определить величину, характеризующую кривизну сферической поверхности сравнительно с евклидовым пространством.

В рамках глобальной неевклидовой геометрии (как мы отмечали ранее) отличие геометрии от евклидовой характеризуется отклонением суммы углов треугольника от π или (что то же самое) отклонением от теоремы Пифагора. Рассмотрим теперь малые участки обеих пространств. Для них квадрат интервала ds**2 между двумя достаточно близкими точками представляется выражениями:

ds**2=dx**2 + dy**2 (плоскость) (1)

ds**2=r**2 sin**2 θ d FI + r**2 d FI**2 (сфера) (2)

r, θ, FI — соответственно радиус, полярный и азимутальные углы. Однако в косоугольных координатах квадрат интервала и плоскости имеет вид

s**2=dx**2 + dy**2 + 2 dx dy cos ALPHA

Хотя численное значение интервала остается неизменным (квадрат длины вектора — инвариант относительно замены системы координат), тем не менее форма (3) имеет более сложный вид, чем соотношение (1). Однако выражения (1) и (3) для квадрата интервала имеют лишь разные формы. Различие форм отражает разницу в выборе системы координат. Изменяя систему отсчета, можно во всей евклидовой плоскости интервал ds**2 свести к простой форме (1).

вернуться

5

См., например: Рашевский П.К. Курс дифференциальной геометрии. М.: ГИТТЛ, 1956. Кроме того, дифференциальная геометрия на разных уровнях излагается во многих книгах, посвященных теории относительности.