Выбрать главу

С выражением (2) интервала на сфере дело обстоит совсем по-другому. Форму (2) никаким преобразованием координат нельзя свести к простому соотношению (1) на всей сфере одновременно. Такую процедуру можно проделать лишь локально, выбирая направление на маленьком участке сферы так, чтобы θ=π/2. Однако при таком выборе система координат фиксируется применительно у этому участку сферы. Поэтому глобально для всей сферы соотношения (2) и (1) различаются, что и отражает неевклидовость сферы. Локально — в малом сферу можно аппроксимировать частью плоскости; глобально — в целом — невозможно.

Представление участка сферы плоскостью довольно тривиальная процедура. Любую малую окрестность достаточно гладкой поверхности можно в первом приближении аппроксимировать плоскостью по аналогии с тем, что отрезок ds непрерывной кривой, описываемой дифференцируемой функцией f(x), представляется в окрестности точки x отрезком прямой длины

ds={[f'(x)]**2+1}**(1/2) dx. (4)

Малый участок достаточно гладкой поверхности обладает следующими свойствами:

1. В малом однозначно определяется прямая — кратчайшее расстояние между двумя точками.

2. В малом определяется однозначно вектор и скалярное произведение двух векторов.

3. Скалярное произведение двух векторов однозначно определяет свойства пространства. Инвариантность скалярного произведения относительно вращений и трансляций определяет евклидово пространство, что и отражено в аналоге равенства (3):

ds**2=dx| dx|=dx|**2 + dx|**2 + 2 dx| dx| cos ALPHA (5)

1 2 1 2 1 2

Это рассуждение — геометрический аналог аналитического соотношения (4). Выбор интервала ds**2 в виде квадратичного выражения принципиален. Квадрат — наименьшая степень, при которой интервал сохраняет свою величину (инвариантен) относительно весьма широкого класса преобразований. В принципе можно было бы опираться на выражения интервалов через многочлены более высокой четной степени, однако, как оказалось, подобная усложненная геометрия практически современной физике не нужна.

Итак, в дифференциальной геометрии фундаментальную роль играет интервал и его инвариантность относительно широкого класса преобразований. Выражение (3) записывается обычно в следующей форме:

ds**2 = g|| dx| dx|, (6)

ik i k

где наличие общих индексов означает суммирование по всем возможным их значениям. Для двумерной поверхности i,k=1,2; для трехмерной — i,k = 1,2,3 и т. д.

Величины g|| образуют метрический тензор и

ik представляются квадратной таблицей (матрицей). Вследствие симметрии (g||=g||) метрический тензор в общем случае

ik ki характеризуется N(N+1)/2 компонентами.

Для пространства Евклида все компоненты метрического тензора можно привести к простейшему виду во всех точках пространства: g||=0, если i\=k; g||=1, если i=k. Это правило

ik ik верно лишь для пространства Евклида. Выражение (6) является алгебраическим представлением произвольной достаточно гладкой поверхности. Можно дать и наглядное, более геометрическое отображение ее свойств. Это отображение основано на упомянутом выше положении, доказанном еще Гауссом, о том, что в малом отклонение геометрии от евклидовой пропорционально некой величине, называемой кривизной. Несколько огрубленно можно сказать, что кривизна (количественная мера отклонения поверхности от евклидовой) оптимальная аппроксимация малого участка поверхности набором окружностей разных радиусов. Число этих окружностей растет с ростом размерности поверхности. Однако существуют симметричные поверхности — пространства, для которых кривизна характеризуется меньшим числом компонент. Так, для сферы кривизна R — однокомпонентная величина.

R~1/r**2, (7)

где R — радиус сферы.

На примере сферы становится ясным, что с уменьшением кривизны или увеличением размеров поверхность локально приближается к евклидову пространству. Такое приближение реализуется и в более общем случае, когда все компоненты кривизны уменьшаются.

Сфера не является единственной поверхностью с постоянной кривизной. Пример другой такой поверхности пространство Лобачевского, образованное вращением гиперболы. Существует, однако, существенная разница между сферой и пространством Лобачевского. Кривизна сферы положительна, кривизна пространства Лобачевского имеет отрицательный знак. Пространство Евклида — единственное, характеризуемое постоянной, но нулевой кривизной.

И еще одно замечание. Ранее отмечалось, что характеристика неевклидовости двумерных плоскостей отклонение суммы углов треугольника от π. Говоря о проведении треугольника на произвольной поверхности, мы молчаливо подразумевали возможность единственного проведения прямых на поверхности в смысле Евклида (прямая — кратчайшее расстояние). Однако в общем случае между двумя точками поверхности можно провести несколько кратчайших расстояний. Эта неоднозначность устраняется, если выбирается достаточно малый участок поверхности.