В общем случае определение связности имеет довольно сложный вид.' Мы здесь ограничимся простым и наглядным примером определения связности и некоторыми важными для физики приложениями.
------------------------------' См. кн.: Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. М.; Наука, 1979, Т.1. ------------------------------
Вернемся снова к рис. 3. Круг и цилиндр на нем расслоение полусферы, изображенной в верхней его части. Построим на полусфере треугольник, образованный геодезическими линиями — отрезками больших кругов. Разумеется (поскольку сфера — неевклидова поверхность), сумма углов треугольника не равна π. Спроецируем точки треугольника на круг (базу), параллельный основанию полусферы. Прямые, осуществляющие проецирование, будем полагать слоями расслоенного пространства.
Произведем далее операцию параллельного переноса на полусфере вдоль контура треугольника. Поскольку полусфера неевклидова поверхность, то при полном обходе треугольника (возвращение вектора в точку, совпадающую с началом вектора a) между направлениями первичного и конечного векторов (стрелки на рисунке) образуется некоторый угол — связность.
Обобщим это понятие на расслоенное пространство. С этой целью спроецируем треугольник на круг (базу). Прямые, осуществляющие проекцию, — слои пространства. Проекции начального и конечного векторов на полусфере образуют на круге некоторый угол v ≠ 0, который является компонентой связности в базе.
Чтобы определить связность в слоях, введем расстояние от начала слоя (отрезка), которое является, вообще говоря, произвольной точкой отсчета. Важно лишь, чтобы во всех слоях были бы одинаковые точки отсчета. Иначе говоря, любой круг, пересекающий слои и параллельный основанию полусферы, мог бы определить точки отсчета. Естественно (но не необходимо) отождествить точки отсчета с точками круга — базы. Будем далее измерять угол между векторами во время параллельного переноса в произвольных единицах (например, радианах) и откладывать этот угол на прямых — слоях пространства. В результате операции полный обход периметра треугольника на сфере будет соответствовать некоторому подъему величины проекции в слое. Этот подъем определяется смещением векторов в полусфере при возвращении в точку, совпадающую с началом вектора a после полного обхода контура. В пространстве слоев
1 начало обхода на полусфере соответствует точке a|, конец 1 1 1 d| (см. рис. 3). Таким образом, расстояние a|d| характеризует связность в слое.
Расслоение полусферы на круг и линейное пространство одно из простейших расслоений, позволяющих дать наглядную интерпретацию связности расслоенного пространства. В общем случае подобная наглядность утрачивается. Идея введения общего определения связности близка к основной идее дифференциальной геометрии: в малом объеме метрика пространства евклидова или псевдоевклидова. В расслоенных пространствах также постулируется простота пространства в малом. Полагается, что в малом расслоенное пространство можно представить простым произведением, частным случае которого и было расслоение полусферы.
В результате обхода микроконтура в полном пространстве или базе определяется компонента связности в базе. Далее в соответствии с приведенным выше примером операция обхода микроконтура количественно отображается в пространстве слоев, определяя таким образом связность в этом пространстве.
В заключение сделаем одно замечание, имеющее, как мы увидим далее, прямое отношение к физике (динамике). Хотя значение связности определяется однозначно, однако операция ее вычисления неоднозначна. Это утверждение — следствие
1 неоднозначности в выборе начальной точки отсчета a|. Сделанный нами выбор: начало обхода контура соответствует пересечению слоя (прямой) и базы (круга) — обусловлен
1 простотой. Точку a| можно было бы сместить вдоль соответствующей прямой (слоя) на произвольную величину.
1 Связность определяется не положением точки a|, а разностью
1 1 отрезком a|d|.
ГЛАВА 2. Д И Н А М И К А
1. ВРЕМЯ
Классическая геометрия (Евклида, Лобачевского, Римана) по своему существу статична. И хотя в ее пределах правомочна операция переноса фигур, но она имеет лишь одно предназначение: установление их равновеликости. Поэтому этот перенос (как правило, мысленный) может осуществляться бесконечно быстро или сколь угодно медленно. Скорость переноса, а следовательно, и его время геометров не интересовали. Геометрия была вне времени. Видимо, время было тем фактором, который более всего способствовал тому, что до конца прошлого столетия геометрия и физика существовали раздельно.