Можно наглядно (но упрощенно) представить геометрическую интерпретацию изотопического спина (рис. 5). К каждой точке прямой «прикреплена» сфера произвольного (единичного) радиуса, в которой вращается вектор состояния, зависящий от координаты. Разумеется, реально точка базового пространства имеет три, а не одно измерение, однако представить наглядную 4-мерную конструкцию невозможно.
9. МНОГОМЕРНАЯ ИНТЕРПРЕТАЦИЯ ВЗАИМОДЕЙСТВИЙ
Для понимания дальнейшей процедуры геометризации взаимодействия нужно четко представить следующие положения:
1. Взаимодействие обуславливается свойствами частиц переносчиков взаимодействия, и в частности их изотопическим спином (см. Дополнения).
2. Состояние представляется вектором, вращающимся в слое расслоенного пространства.
3. Взаимодействие определяется характеристиками расслоенного пространства, и в частности связностью.
4. В основе взаимодействия лежит калибровочная инвариантность.
Эти положения носят программный характер. Дальнейшее представляет их конкретную реализацию. Для простоты ограничимся вначале электродинамикой. Как упоминалось ранее, уравнения электродинамики однозначно определяются характеристиками фотона — частицы, переносящей электромагнитное взаимодействие. Масса и изотопический спин фотона равны нулю. Это обстоятельство приводит к фазовой инвариантности функции состояния
i ALPHA(x) PSIG'(x) — > e|||||||||| Ψ(x) и калибровочной инвариантности потенциалов A'(x) — > A(x) + ∂ f (x) / ∂ x. Важно, что в формуле для преобразования функция ALPHA(x) простое (хотя, возможно, и комплексное) число, а не матрица. Это свойство определяется нулевым значением изотопического спина фотона. Если бы изотопический спин частицы-переносчика был отличен от нуля, то коэффициент ALPHA представлялся бы матрицей, что кардинально изменяло бы ситуацию. Этот случай будет рассмотрен далее.
Вернемся теперь к соотношению инвариантности функции Ψ в электродинамике и будем геометрически
i ALPHA(x) интерпретировать фазовый множитель e||||||||||. Рассмотрим, как и ранее, простейший случай статического поля. В этом случае ALPHA(x) = const. Однако (и это обстоятельство играет важнейшую роль) ALPHA может иметь любое действительное значение.
Напомним еще раз, что вследствие теоремы Эйлера функция i ALPHA e||||||| соответствует точке в плоскости комплексного переменного:
i ALPHA e||||||| = cos ALPHA + i sin ALPHA (52)
Таким образом, cos ALPHA есть значение действительной,
i ALPHA а sin ALPHA — мнимой части комплексного числа e|||||||.
i ALPHA Модуль комплексного числа! e|||||||! = 1. С геометрических позиций эта интерпретация эквивалентна
i ALPHA утверждению, что функция e||||||| есть точка в двумерной декартовой плоскости с абсциссой, равной cos ALPHA, и ординатой sin ALPHA. Эта точка лежит на окружности с радиусом, равным единице. Учтем далее, что ALPHA принимает произвольное действительное значение. следовательно, число i ALPHA e||||||| при любом значении ALPHA образует окружность с единичным радиусом. Инвариантность относительно преобразования (49) означает, что вектор состояния Ψ может находиться на такой окружности, которая обозначается
1 символом S| (сфера размерности единица). Поэтому естественно
1 допустить, что окружность (сфера S|) и является слоем над базой — привычным пространством Минковского. Напомним, что в данном случае рассматриваются только электромагнитные силы, поэтому следует отождествлять базовое пространство с пространством Минковского. При совместном действии электромагнитных и гравитационных сил следовало бы базой полагать пространство Римана.
Нетрудно определить и связность расслоенного пространства, соответствующего данному статическому случаю. Как обычно, начало координат отождествим с заряженным телом отсчета. Пусть расстояние до данной точки в пространстве Минковского (Евклида) равно R. Тогда следует слой (плоскость окружности) расположить перпендикулярно вектору R, проходящему через центр окружности. Характеристикой расслоенного пространства, связывающего взаиморасположение соседних слоев и физическую ситуацию, является плотность центров окружностей (слоев) на окружности в базе с радиусом R. Следует положить, что эта плотность равна потенциалу!e!/R, где e — заряд тела отсчета.
Естественно, что, вводя слои-окружности, мы увеличиваем на единицу размерность пространства. Нужно четко представить (вообразить), что слой — это не геометрическое место точек в базе, а автономная геометрическая конструкция над базой.