1 включающей окружность S|. В действительности такая процедура слишком упрощена. Выше отмечалось, что окружность
1 (сфера S|) обладает среди сфер уникальной особенностью: лишь
1 в пределах сферы S| два последовательных вращения коммутативны, что отражается в разнице правил коммутации двух чисел и двух матриц. Суммарное вращение в пределах окружности не зависит от порядка, в котором вращается вектор состояния. Окончательный результат не зависит от того, в каком порядке пробегает вектор состояния два угла (ALPHA|,
1 ALPHA|) вдоль окружности. Суммарный угол в любом случае
2 равен ALPHA| + ALPHA| = ALPHA| + ALPHA|.
1 2 2 1
Совершенно иная ситуация возникает при вращении в
N сферах S| (N≥2) высших размерностей. В этом случае суммарное вращение зависит от порядка, что символически можно записать в форме ALPHA| + ALPHA| = ALPHA| + ALPHA|.
1 2 2 1 Подобное различие в свойствах коммутативности обуславливает кардинальную разницу между уравнениями электродинамики и
1 уравнениями Янга — Миллса. Поэтому включение окружности S| в
3 сферу S| неправомочно.
Однако вполне оправдана несколько иная операция:
1 выделения некоторой окружности S| и использования ее в
3 дальнейшем для построения сферы S|. Иначе говоря, разбиения
3 1 2 сферы S| на две: S| и S|. В стандартных обозначениях такое
3 1 2 разбиение имеет вид S| = S| + S|. Это произведение двух сфер и есть геометрическая интерпретация электрослабого взаимодействия. Наглядно ее можно попытаться представить как пространство Минковского (Римана), в каждой точке которого в определенном взаимоотношении «прикреплены» окружности и сферы одинакового радиуса.
По аналогии с геометрической интерпретацией электрослабого взаимодействия можно геометрически интерпретировать объединение сильного, слабого и электромагнитного взаимодействия (большое объединение).
Квантовая хромодинамика определяется группой SU(3), соответствующей 3-мерному комплексному пространству (матрица T 3-мерна). Учитывая квантовое условие унитарности (см. выше), размерность соответствующего пространства равна восьми. Эту размерность можно уменьшить до семи, используя свойства проективных пространств, когда одна из размерностей стягивается в точку. В проективной геометрии все точки, координаты которых пропорциональны (отличаются одним и тем же числовым множителем), принимаются за одну точку. Иначе говоря, все точки с координатами bx|, bx|…, bx| (b
1 2 N действительное число, принимающее различные значения) рассматриваются как одна. Это означает, что в рамках проективной геометрии прямая эквивалентна точке, что является отражением принципа двойственности. Поэтому проективное пространство с размерностью N в известном смысле эквивалентно обычному пространству с размерностью N+1, а
2 2 1 1 произведение пространств CP| x S| x S| (CP| — проективное двумерное комплексное пространство, эквивалентное 4-мерному действительному пространству) эквивалентно изотопическим пространствам, отражающим все три взаимодействия: сильное
1 (SU(3)), слабое (SU(2)) и электромагнитное (S|).
Итак, изотопическое пространство большого объединения интерпретируется 7-мерным компактным ограниченным по объему
2 2 1 пространством CP| x S| x S|. Здесь возникает естественный
2 2 1 вопрос, является ли компактный слой CP| x S| x S| единственным геометрическим отображением всех взаимодействий, кроме гравитационного. На этот вопрос следует отрицательный ответ, имеющий два аспекта: геометрический и физический.
Геометрический сводится к тому, что представление трех
2 2 1 взаимодействий в виде произведения CP| x S| x S| неоднозначно. Их можно представить, например, в виде произведения двух сфер разной размерности, но так, чтобы суммарная размерность была бы больше шести. Динамическая неоднозначность определяется опытом. Нет доказательств отсутствия сверхслабых (незарегистрированных до сих пор) взаимодействий, которые могут усложнить структуру слоев.
Таким образом, объединение всех четырех взаимодействий можно интерпретировать как расслоенное пространство с базой — 4-мерным пространством Римана и 7-мерным слоем чрезвычайно малых размеров. Эти размеры определяются по порядку величины из соображений размерности (величина, имеющая размерность длины и образованная из универсальных фундаментальных постоянных G, h и c) и значения константы объединенного взаимодействия. Оба подхода приводят к значению радиуса r|
c компактных компактных размерностей, равного планковским размерам (см.(54)). Разумеется, значение r| ~ l| ~ 10**-33
c p см — это лишь порядок величины и причем весьма грубый, компактных слоев. Нельзя, например, исключить, что r| ~ l|/ALPHA| ~ 10**-31 см. c p e